Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Sci Health B ; 56(9): 821-827, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34339339

RESUMO

Studies were conducted to investigate the recovery of Campylobacter from feed. The impact of feed moisture, water activity, pH, number of background microflora and the use of different antibiotic supplements in Campylobacter enrichment broth (CEB) on Campylobacter recovery were evaluated in five studies. Broiler starter feed was inoculated with 104 -105 cfu of Campylobacter/g and stored at 24 °C and 43% RH. Enrichment culture was conducted on the day of inoculation or 24 h post inoculation and every 48 h of storage thereafter for 14 d. Feed moisture, water activity, pH and level of background microflora were not correlated with Campylobacter recovery. The incubation of feed in CEB with no antibiotic supplement resulted in the number of background microflora increasing to 109 cfu/g and the pH of the media decreasing to pH 4-5 impacting recovery. Addition of certain antimicrobial supplements to CEB reduced background microflora growth and maintained a near neutral pH. Campylobacter was recovered up to 10 days post inoculation when using CEB containing antibiotic supplements compared to 1 day in CEB. These findings suggest that Campylobacter can be recovered from feed and the type of antimicrobial supplement utilized influences recovery by controlling extraneous microbial growth which occurs during enrichment.


Assuntos
Campylobacter , Animais , Galinhas , Contagem de Colônia Microbiana , Meios de Cultura , Suplementos Nutricionais , Microbiologia de Alimentos
2.
J Environ Sci Health B ; 54(4): 313-316, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30696340

RESUMO

The pH of Salmonella pre-enrichment media can become acidic (pH 4.0-5.0) when feeds/ingredients are incubated for 24 h. Salmonella in feed that have been stressed by heat and desiccation exhibit different pH tolerances than non-stressed cultures. Acidic conditions can result in cell injury/death and affect biochemical pathways. In this study, eight serotypes of Salmonella were grown in sterile meat and bone meal that was subjected to desiccation and heat stress. Cultures of non-stressed and stressed isolates were subsequently exposed to acidic pH from 4.0 to 7.0 in 0.5 pH increments (3 replicates/pH increment) in citrate buffer. At 6 and 24 h, serial dilutions were plated in duplicate on XLT-4 (xylose lysine tergitol-4) agar. Four serotypes showed an impaired ability to decarboxylate lysine on XLT-4. This inability to decarboxylate lysine was dependent on isolate, stress status, and incubation time. When the isolates' ability to decarboxylate lysine was examined using biochemical tests, cultures were found to be able to decarboxylate lysine with the exception of S. Infantis. This suggests that XLT-4 contains a biochemical stressor(s) which affects the rate of decarboxylation by these Salmonella. These results suggest that acidic conditions may influence the detection and confirmation of Salmonella in feed.


Assuntos
Ração Animal/microbiologia , Resposta ao Choque Térmico/fisiologia , Sulfeto de Hidrogênio/metabolismo , Salmonella/metabolismo , Ágar , Meios de Cultura/química , Descarboxilação , Dessecação , Concentração de Íons de Hidrogênio , Lisina/metabolismo , Salmonella/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA