Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mucosal Immunol ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39074615

RESUMO

The olfactory mucosa is important for both the sense of smell and as a mucosal immune barrier to the upper airway and brain. However, little is known about how the immune system mediates the conflicting goals of neuronal maintenance and inflammation in this tissue. A number of immune cell populations reside within the olfactory mucosa and yet we have little understanding of how these resident olfactory immune cells functionally interact with the chemosensory environment. Identifying these interactions will allow therapeutic manipulations that treat disorders such as post-viral olfactory dysfunction. Macrophages are the most prevalent immune cell type in the uninflamed olfactory mucosa and here, we identify two distinct tissue macrophage populations in murine olfactory mucosa. P2ry12hi macrophages are transcriptionally specialized for neuron interactions, closely associated with olfactory neuron cell bodies, long-term tissue residents, and functionally specialized to phagocytose cells and debris, including olfactory neurons. Conversely, MHC Class IIhi macrophages are transcriptionally dedicated to cytokine production and antigen presentation, localized primarily within the olfactory lamina propria, more rapidly replaced by blood monocytes, and rapidly produce chemokines in response to viral infection. We further show that these macrophage signatures are present in human olfactory biopsies, and P2ry12-like olfactory macrophages are reduced in patients with long-term smell loss following COVID-19. Together, these data show that two olfactory macrophage populations regulate neurons and initiate the immune response, contributing to our understanding of both olfactory immunity and tissue-resident macrophage biology.

2.
Curr Opin Immunol ; 87: 102421, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38733669

RESUMO

Effective high-affinity, long-term humoral immunity requires T cell help provided by a subset of differentiated CD4+ T cells known as T follicular helper (Tfh) cells. Classically, Tfh cells provide contact-dependent help for the generation of germinal centers (GCs) in secondary lymphoid organs (SLOs). Recent studies have expanded the conventional definition of Tfh cells, revealing new functions, new descriptions of Tfh subsets, new factors regulating Tfh differentiation, and new roles outside of SLO GCs. Together, these data suggest that one Tfh is not equivalent to another, helping redefine our understanding of Tfh cells and their biology.


Assuntos
Diferenciação Celular , Centro Germinativo , Células T Auxiliares Foliculares , Diferenciação Celular/imunologia , Humanos , Animais , Células T Auxiliares Foliculares/imunologia , Centro Germinativo/imunologia , Centro Germinativo/citologia , Imunidade Humoral , Linfócitos T Auxiliares-Indutores/imunologia
3.
Nat Rev Immunol ; 24(6): 381-398, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38097777

RESUMO

The olfactory mucosa is a component of the nasal airway that mediates the sense of smell. Recent studies point to an important role for the olfactory mucosa as a barrier to both respiratory pathogens and to neuroinvasive pathogens that hijack the olfactory nerve and invade the CNS. In particular, the COVID-19 pandemic has demonstrated that the olfactory mucosa is an integral part of a heterogeneous nasal mucosal barrier critical to upper airway immunity. However, our insufficient knowledge of olfactory mucosal immunity hinders attempts to protect this tissue from infection and other diseases. This Review summarizes the state of olfactory immunology by highlighting the unique immunologically relevant anatomy of the olfactory mucosa, describing what is known of olfactory immune cells, and considering the impact of common infectious diseases and inflammatory disorders at this site. We will offer our perspective on the future of the field and the many unresolved questions pertaining to olfactory immunity.


Assuntos
COVID-19 , Mucosa Olfatória , SARS-CoV-2 , Humanos , Mucosa Olfatória/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Animais , Imunidade nas Mucosas/imunologia , Sistema Nervoso Central/imunologia , Olfato/imunologia , Olfato/fisiologia
4.
Cell Mol Immunol ; 21(2): 134-143, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38143247

RESUMO

Numerous pathogens can infect the olfactory tract, yet the pandemic caused by SARS-CoV-2 has strongly emphasized the importance of the olfactory mucosa as an immune barrier. Situated in the nasal passages, the olfactory mucosa is directly exposed to the environment to sense airborne odorants; however, this also means it can serve as a direct route of entry from the outside world into the brain. As a result, olfactotropic infections can have serious consequences, including dysfunction of the olfactory system, CNS invasion, dissemination to the lower respiratory tract, and transmission between individuals. Recent research has shown that a distinctive immune response is needed to protect this neuronal and mucosal tissue. A better understanding of innate, adaptive, and structural immune barriers in the olfactory mucosa is needed to develop effective therapeutics and vaccines against olfactotropic microbes such as SARS-CoV-2. Here, we summarize the ramifications of SARS-CoV-2 infection of the olfactory mucosa, review the subsequent immune response, and discuss important areas of future research for olfactory immunity to infectious disease.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Mucosa Olfatória , Encéfalo , Imunidade
5.
Methods Mol Biol ; 2710: 61-69, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37688724

RESUMO

Olfactory immunology is an emerging field in the context of infectious disease and neuroimmunology, yet characterization of immune cells within the murine olfactory mucosa remains sparse. This is partially due to the difficulty in distinguishing olfactory-resident immune cells from immune cells that reside within nasal turbinate bone marrow. Using techniques like intranasal antibody labeling, we have developed methods to definitively identify olfactory immune cells via flow cytometry and immunofluorescent confocal microscopy. This protocol will describe the best practices for these methods, as well as detail how intravenous antibody labeling can be used to study the blood-olfactory barrier, an important determinant of olfactory immunity. We also include validated markers for the identification of major olfactory immune populations.


Assuntos
Anticorpos , Corantes , Animais , Camundongos , Citometria de Fluxo , Imunoglobulinas Intravenosas , Microscopia Confocal
6.
Sci Transl Med ; 14(676): eadd0484, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542694

RESUMO

SARS-CoV-2 causes profound changes in the sense of smell, including total smell loss. Although these alterations are often transient, many patients with COVID-19 exhibit olfactory dysfunction that lasts months to years. Although animal and human autopsy studies have suggested mechanisms driving acute anosmia, it remains unclear how SARS-CoV-2 causes persistent smell loss in a subset of patients. To address this question, we analyzed olfactory epithelial samples collected from 24 biopsies, including from nine patients with objectively quantified long-term smell loss after COVID-19. This biopsy-based approach revealed a diffuse infiltrate of T cells expressing interferon-γ and a shift in myeloid cell population composition, including enrichment of CD207+ dendritic cells and depletion of anti-inflammatory M2 macrophages. Despite the absence of detectable SARS-CoV-2 RNA or protein, gene expression in the barrier supporting cells of the olfactory epithelium, termed sustentacular cells, appeared to reflect a response to ongoing inflammatory signaling, which was accompanied by a reduction in the number of olfactory sensory neurons relative to olfactory epithelial sustentacular cells. These findings indicate that T cell-mediated inflammation persists in the olfactory epithelium long after SARS-CoV-2 has been eliminated from the tissue, suggesting a mechanism for long-term post-COVID-19 smell loss.


Assuntos
COVID-19 , Transtornos do Olfato , Animais , Humanos , COVID-19/complicações , Anosmia , SARS-CoV-2 , RNA Viral/metabolismo , Transtornos do Olfato/epidemiologia , Transtornos do Olfato/etiologia , Mucosa Olfatória , Expressão Gênica
7.
Nat Commun ; 13(1): 5901, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202870

RESUMO

Production of a functional peripheral T cell compartment typically involves massive expansion of the bone marrow progenitors that seed the thymus. There are two main phases of expansion during T cell development, following T lineage commitment of double-negative (DN) 2 cells and after successful rearrangement and selection for functional TCRß chains in DN3 thymocytes, which promotes the transition of DN4 cells to the DP stage. The signals driving the expansion of DN2 thymocytes are well studied. However, factors regulating the proliferation and survival of DN4 cells remain poorly understood. Here, we uncover an unexpected link between the transcription factor Zfp335 and control of cGAS/STING-dependent cell death in post-ß-selection DN4 thymocytes. Zfp335 controls survival by sustaining expression of Ankle2, which suppresses cGAS/STING-dependent cell death. Together, this study identifies Zfp335 as a key transcription factor regulating the survival of proliferating post-ß-selection thymocytes and demonstrates a key role for the cGAS/STING pathway in driving apoptosis of developing T cells.


Assuntos
Apoptose , Proteínas de Membrana/metabolismo , Timócitos , Animais , Apoptose/genética , Diferenciação Celular , Camundongos , Camundongos Endogâmicos C57BL , Nucleotidiltransferases , Timócitos/metabolismo , Timo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Immunity ; 55(11): 2118-2134.e6, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36137543

RESUMO

While blood antibodies mediate protective immunity in most organs, whether they protect nasal surfaces in the upper airway is unclear. Using multiple viral infection models in mice, we found that blood-borne antibodies could not defend the olfactory epithelium. Despite high serum antibody titers, pathogens infected nasal turbinates, and neurotropic microbes invaded the brain. Using passive antibody transfers and parabiosis, we identified a restrictive blood-endothelial barrier that excluded circulating antibodies from the olfactory mucosa. Plasma cell depletions demonstrated that plasma cells must reside within olfactory tissue to achieve sterilizing immunity. Antibody blockade and genetically deficient models revealed that this local immunity required CD4+ T cells and CXCR3. Many vaccine adjuvants failed to generate olfactory plasma cells, but mucosal immunizations established humoral protection of the olfactory surface. Our identification of a blood-olfactory barrier and the requirement for tissue-derived antibody has implications for vaccinology, respiratory and CNS pathogen transmission, and B cell fate decisions.


Assuntos
Linfócitos B , Plasmócitos , Animais , Camundongos , Linfócitos T , Imunoglobulinas , Encéfalo , Imunidade nas Mucosas , Anticorpos Antivirais
9.
bioRxiv ; 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35478953

RESUMO

Most human subjects infected by SARS-CoV-2 report an acute alteration in their sense of smell, and more than 25% of COVID patients report lasting olfactory dysfunction. While animal studies and human autopsy tissues have suggested mechanisms underlying acute loss of smell, the pathophysiology that underlies persistent smell loss remains unclear. Here we combine objective measurements of smell loss in patients suffering from post-acute sequelae of SARS-CoV-2 infection (PASC) with single cell sequencing and histology of the olfactory epithelium (OE). This approach reveals that the OE of patients with persistent smell loss harbors a diffuse infiltrate of T cells expressing interferon-gamma; gene expression in sustentacular cells appears to reflect a response to inflammatory signaling, which is accompanied by a reduction in the number of olfactory sensory neurons relative to support cells. These data identify a persistent epithelial inflammatory process associated with PASC, and suggests mechanisms through which this T cell-mediated inflammation alters the sense of smell.

10.
J Clin Invest ; 132(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34990409

RESUMO

BACKGROUNDPresbyosmia, or aging-related olfactory loss, occurs in a majority of humans over age 65 years, yet remains poorly understood, with no specific treatment options. The olfactory epithelium (OE) is the peripheral organ for olfaction and is subject to acquired damage, suggesting a likely site of pathology in aging. Adult stem cells reconstitute the neuroepithelium in response to cell loss under normal conditions. In aged OE, patches of respiratory-like metaplasia have been observed histologically, consistent with a failure in normal neuroepithelial homeostasis.MethodsAccordingly, we have focused on identifying cellular and molecular changes in presbyosmic OE. The study combined psychophysical testing with olfactory mucosa biopsy analysis, single-cell RNA-Sequencing (scRNA-Seq), and culture studies.ResultsWe identified evidence for inflammation-associated changes in the OE stem cells of presbyosmic patients. The presbyosmic basal stem cells exhibited increased expression of genes involved in response to cytokines or stress or the regulation of proliferation and differentiation. Using a culture model, we found that cytokine exposure drove increased TP63, a transcription factor acting to prevent OE stem cell differentiation.ConclusionsOur data suggest aging-related inflammatory changes in OE stem cells may contribute to presbyosmia via the disruption of normal epithelial homeostasis. OE stem cells may represent a therapeutic target for restoration of olfaction.FundingNIH grants DC018371, NS121067, DC016224; Office of Physician-Scientist Development, Burroughs-Wellcome Fund Research Fellowship for Medical Students Award, Duke University School of Medicine.


Assuntos
Envelhecimento/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica , Transtornos do Olfato/metabolismo , Mucosa Olfatória/metabolismo , Células-Tronco/metabolismo , Idoso , Idoso de 80 Anos ou mais , Células Epiteliais/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
12.
Cell Rep ; 32(9): 108103, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877682

RESUMO

Influenza viruses initiate infection in the upper respiratory tract (URT), but early viral tropism and the importance of cell-type-specific antiviral responses in this tissue remain incompletely understood. By infecting transgenic lox-stop-lox reporter mice with a Cre-recombinase-expressing influenza B virus, we identify olfactory sensory neurons (OSNs) as a major viral cell target in the URT. These cells become infected, then eliminate the virus and survive in the host post-resolution of infection. OSN responses to infection are characterized by a strong induction of interferon-stimulated genes and more rapid clearance of viral protein relative to other cells in the epithelium. We speculate that this cell-type-specific response likely serves to protect the central nervous system from infection. More broadly, these results highlight the importance of evaluating antiviral responses across different cell types, even those within the same tissue, to more fully understand the mechanisms of viral disease.


Assuntos
Vírus da Influenza A/fisiologia , Influenza Humana/virologia , Infecções Respiratórias/tratamento farmacológico , Replicação Viral/genética , Animais , Humanos , Camundongos , Infecções Respiratórias/patologia
13.
J Clin Invest ; 130(2): 774-788, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31661470

RESUMO

Efficacy of dendritic cell (DC) cancer vaccines is classically thought to depend on their antigen-presenting cell (APC) activity. Studies show, however, that DC vaccine priming of cytotoxic T lymphocytes (CTLs) requires the activity of endogenous DCs, suggesting that exogenous DCs stimulate antitumor immunity by transferring antigens (Ags) to endogenous DCs. Such Ag transfer functions are most commonly ascribed to monocytes, implying that undifferentiated monocytes would function equally well as a vaccine modality and need not be differentiated to DCs to be effective. Here, we used several murine cancer models to test the antitumor efficacy of undifferentiated monocytes loaded with protein or peptide Ag. Intravenously injected monocytes displayed antitumor activity superior to DC vaccines in several cancer models, including aggressive intracranial glioblastoma. Ag-loaded monocytes induced robust CTL responses via Ag transfer to splenic CD8+ DCs in a manner independent of monocyte APC activity. Ag transfer required cell-cell contact and the formation of connexin 43-containing gap junctions between monocytes and DCs. These findings demonstrate the existence of an efficient gap junction-mediated Ag transfer pathway between monocytes and CD8+ DCs and suggest that administration of tumor Ag-loaded undifferentiated monocytes may serve as a simple and efficacious immunotherapy for the treatment of human cancers.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunidade Celular , Imunoterapia , Monócitos , Neoplasias Experimentais , Animais , Camundongos , Camundongos Knockout , Monócitos/imunologia , Monócitos/transplante , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia
14.
J Cell Sci ; 129(19): 3597-3608, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27539921

RESUMO

Positive-strand RNA viruses invariably assemble their viral replication complexes (VRCs) by remodeling host intracellular membranes. How viral replication proteins are targeted to specific organelle membranes to initiate VRC assembly remains elusive. Brome mosaic virus (BMV), whose replication can be recapitulated in Saccharomyces cerevisiae, assembles its VRCs by invaginating the outer perinuclear endoplasmic reticulum (ER) membrane. Remarkably, BMV replication protein 1a (BMV 1a) is the only viral protein required for such membrane remodeling. We show that ER-vesicle protein of 14 kD (Erv14), a cargo receptor of coat protein complex II (COPII), interacts with BMV 1a. Moreover, the perinuclear ER localization of BMV 1a is disrupted in cells lacking ERV14 or expressing dysfunctional COPII coat components (Sec13, Sec24 or Sec31). The requirement of Erv14 for the localization of BMV 1a is bypassed by addition of a Sec24-recognizable sorting signal to BMV 1a or by overexpressing Sec24, suggesting a coordinated effort by both Erv14 and Sec24 for the proper localization of BMV 1a. The COPII pathway is well known for being involved in protein secretion; our data suggest that a subset of COPII coat proteins have an unrecognized role in targeting proteins to the perinuclear ER membrane.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Núcleo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Bromovirus/fisiologia , Bromovirus/ultraestrutura , Deleção de Genes , Genoma Viral , Proteínas de Fluorescência Verde/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Ligação Proteica , RNA Viral , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/virologia , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA