Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
bioRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617277

RESUMO

Optineurin (OPTN) mutations are linked to amyotrophic lateral sclerosis (ALS) and normal tension glaucoma (NTG), but a relevant animal model is lacking, and the molecular mechanisms underlying neurodegeneration are unknown. We found that OPTN C-terminus truncation (OPTN∆C) causes late-onset neurodegeneration of retinal ganglion cells (RGCs), optic nerve (ON), and spinal cord motor neurons, preceded by a striking decrease of axonal mitochondria. Surprisingly, we discover that OPTN directly interacts with both microtubules and the mitochondrial transport complex TRAK1/KIF5B, stabilizing them for proper anterograde axonal mitochondrial transport, in a C-terminus dependent manner. Encouragingly, overexpressing OPTN/TRAK1/KIF5B reverses not only OPTN truncation-induced, but also ocular hypertension-induced neurodegeneration, and promotes striking ON regeneration. Therefore, in addition to generating new animal models for NTG and ALS, our results establish OPTN as a novel facilitator of the microtubule-dependent mitochondrial transport necessary for adequate axonal mitochondria delivery, and its loss as the likely molecular mechanism of neurodegeneration.

2.
Invest Ophthalmol Vis Sci ; 64(15): 25, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117244

RESUMO

Purpose: To evaluate the effects of mechanical disruption of the inner limiting membrane (ILM) on the ability to target interventions to the inner neurosensory retina in a rodent model. Our study used an animal model to gain insight into the normal physiology of the ILM and advances our understanding of the effects of mechanical ILM removal on the viral transduction of retinal ganglion cells and retinal ganglion cell transplantation. Methods: The ILM in the in vivo rat eye was disrupted using mechanical forces applied to the vitreoretinal interface. Immunohistology and electron microscopy were used to verify the removal of the ILM in retina flatmounts and sections. To assess the degree to which ILM disruption enhanced transvitreal access to the retina, in vivo studies involving intravitreal injections of adeno-associated virus (AAV) to transduce retinal ganglion cells (RGCs) and ex vivo studies involving co-culture of human stem cell-derived RGCs (hRGCs) on retinal explants were performed. RGC transduction efficiency and transplanted hRGC integration with retinal explants were evaluated by immunohistology of the retinas. Results: Mechanical disruption of the ILM in the rodent eye was sufficient to remove the ILM from targeted retinal areas while preserving the underlying retinal nerve fiber layer and RGCs. Removal of the ILM enhanced the transduction efficiency of intravitreally delivered AAV threefold (1380.0 ± 290.1 vs. 442.0 ± 249.3 cells/mm2; N = 6; P = 0.034). Removal of the ILM was also sufficient to promote integration of transplanted RGCs within the inner retina. Conclusions: The ILM is a barrier to transvitreally delivered agents including viral vectors and cells. Mechanical removal of the ILM is sufficient to enhance access to the inner retina, improve viral transduction efficiencies of RGCs, and enhance cellular integration of transplanted RGCs with the retina.


Assuntos
Retina , Células Ganglionares da Retina , Animais , Humanos , Ratos , Técnicas de Cocultura , Dependovirus , Injeções Intravítreas
3.
Mol Neurodegener ; 18(1): 64, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735444

RESUMO

Retinal ganglion cell (RGC) death in glaucoma and other optic neuropathies results in irreversible vision loss due to the mammalian central nervous system's limited regenerative capacity. RGC repopulation is a promising therapeutic approach to reverse vision loss from optic neuropathies if the newly introduced neurons can reestablish functional retinal and thalamic circuits. In theory, RGCs might be repopulated through the transplantation of stem cell-derived neurons or via the induction of endogenous transdifferentiation. The RGC Repopulation, Stem Cell Transplantation, and Optic Nerve Regeneration (RReSTORe) Consortium was established to address the challenges associated with the therapeutic repair of the visual pathway in optic neuropathy. In 2022, the RReSTORe Consortium initiated ongoing international collaborative discussions to advance the RGC repopulation field and has identified five critical areas of focus: (1) RGC development and differentiation, (2) Transplantation methods and models, (3) RGC survival, maturation, and host interactions, (4) Inner retinal wiring, and (5) Eye-to-brain connectivity. Here, we discuss the most pertinent questions and challenges that exist on the path to clinical translation and suggest experimental directions to propel this work going forward. Using these five subtopic discussion groups (SDGs) as a framework, we suggest multidisciplinary approaches to restore the diseased visual pathway by leveraging groundbreaking insights from developmental neuroscience, stem cell biology, molecular biology, optical imaging, animal models of optic neuropathy, immunology & immunotolerance, neuropathology & neuroprotection, materials science & biomedical engineering, and regenerative neuroscience. While significant hurdles remain, the RReSTORe Consortium's efforts provide a comprehensive roadmap for advancing the RGC repopulation field and hold potential for transformative progress in restoring vision in patients suffering from optic neuropathies.


Assuntos
Doenças do Nervo Óptico , Células Ganglionares da Retina , Animais , Humanos , Retina , Encéfalo , Diferenciação Celular , Mamíferos
4.
NPJ Regen Med ; 8(1): 55, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773257

RESUMO

In optic neuropathies, including glaucoma, retinal ganglion cells (RGCs) die. Cell transplantation and endogenous regeneration offer strategies for retinal repair, however, developmental programs required for this to succeed are incompletely understood. To address this, we explored cellular reprogramming with transcription factor (TF) regulators of RGC development which were integrated into human pluripotent stem cells (PSCs) as inducible gene cassettes. When the pioneer factor NEUROG2 was combined with RGC-expressed TFs (ATOH7, ISL1, and POU4F2) some conversion was observed and when pre-patterned by BMP inhibition, RGC-like induced neurons (RGC-iNs) were generated with high efficiency in just under a week. These exhibited transcriptional profiles that were reminiscent of RGCs and exhibited electrophysiological properties, including AMPA-mediated synaptic transmission. Additionally, we demonstrated that small molecule inhibitors of DLK/LZK and GCK-IV can block neuronal death in two pharmacological axon injury models. Combining developmental patterning with RGC-specific TFs thus provided valuable insight into strategies for cell replacement and neuroprotection.

5.
Cell Rep ; 42(9): 113038, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37624696

RESUMO

Chronic neurodegeneration and acute injuries lead to neuron losses via diverse processes. We compared retinal ganglion cell (RGC) responses between chronic glaucomatous conditions and the acute injury model. Among major RGC subclasses, αRGCs and intrinsically photosensitive RGCs (ipRGCs) preferentially survive glaucomatous conditions, similar to findings in the retina subject to axotomy. Focusing on an αRGC intrinsic factor, Osteopontin (secreted phosphoprotein 1 [Spp1]), we found an ectopic neuronal expression of Osteopontin (Spp1) in other RGCs subject to glaucomatous conditions. This contrasted with the Spp1 downregulation subject to axotomy. αRGC-specific Spp1 elimination led to significant αRGC loss, diminishing their resiliency. Spp1 overexpression led to robust neuroprotection of susceptible RGC subclasses under glaucomatous conditions. In contrast, Spp1 overexpression did not significantly protect RGCs subject to axotomy. Additionally, SPP1 marked adult human RGC subsets with large somata and SPP1 expression in the aqueous humor correlated with glaucoma severity. Our study reveals Spp1's role in mediating neuronal resiliency in glaucoma.


Assuntos
Glaucoma , Doenças do Nervo Óptico , Humanos , Células Ganglionares da Retina/metabolismo , Osteopontina , Nervo Óptico/metabolismo , Doenças do Nervo Óptico/metabolismo
6.
J Glaucoma ; 32(3): 151-158, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36877820

RESUMO

PRCIS: We updated a clinical decision support tool integrating predicted visual field (VF) metrics from an artificial intelligence model and assessed clinician perceptions of the predicted VF metric in this usability study. PURPOSE: To evaluate clinician perceptions of a prototyped clinical decision support (CDS) tool that integrates visual field (VF) metric predictions from artificial intelligence (AI) models. METHODS: Ten ophthalmologists and optometrists from the University of California San Diego participated in 6 cases from 6 patients, consisting of 11 eyes, uploaded to a CDS tool ("GLANCE", designed to help clinicians "at a glance"). For each case, clinicians answered questions about management recommendations and attitudes towards GLANCE, particularly regarding the utility and trustworthiness of the AI-predicted VF metrics and willingness to decrease VF testing frequency. MAIN OUTCOMES AND MEASURES: Mean counts of management recommendations and mean Likert scale scores were calculated to assess overall management trends and attitudes towards the CDS tool for each case. In addition, system usability scale scores were calculated. RESULTS: The mean Likert scores for trust in and utility of the predicted VF metric and clinician willingness to decrease VF testing frequency were 3.27, 3.42, and 2.64, respectively (1=strongly disagree, 5=strongly agree). When stratified by glaucoma severity, all mean Likert scores decreased as severity increased. The system usability scale score across all responders was 66.1±16.0 (43rd percentile). CONCLUSIONS: A CDS tool can be designed to present AI model outputs in a useful, trustworthy manner that clinicians are generally willing to integrate into their clinical decision-making. Future work is needed to understand how to best develop explainable and trustworthy CDS tools integrating AI before clinical deployment.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Aprendizado Profundo , Glaucoma , Humanos , Campos Visuais , Inteligência Artificial , Pressão Intraocular , Glaucoma/diagnóstico , Glaucoma/terapia
7.
J Neurotrauma ; 40(15-16): 1743-1761, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36680758

RESUMO

Traumatic axonal injury (TAI), thought to be caused by rotational acceleration of the head, is a prevalent neuropathology in traumatic brain injury (TBI). TAI in the optic nerve is a common finding in multiple blunt-force TBI models and hence a great model to study mechanisms and treatments for TAI, especially in view of the compartmentalized anatomy of the visual system. We have previously shown that the somata and the proximal, but not distal, axons of retinal ganglion cells (RGC) respond to DLK/LZK blockade after impact acceleration of the head (IA-TBI). Here, we explored the role of the sterile alpha and TIR-motif containing 1 (SARM1), the key driver of Wallerian degeneration (WD), in the progressive breakdown of distal and proximal segments of the optic nerve following IA-TBI with high-resolution morphological and classical neuropathological approaches. Wild type and Sarm1 knockout (KO) mice received IA-TBI or sham injury and were allowed to survive for 3, 7, 14, and 21 days. Ultrastructural and microscopic analyses revealed that TAI in the optic nerve is characterized by variable involvement of individual axons, ranging from apparent early disconnection of a subpopulation of axons to a range of ongoing axonal and myelin perturbations. Traumatic axonal injury resulted in the degeneration of a population of axons distal and proximal to the injury, along with retrograde death of a subpopulation of RGCs. Quantitative analyses on proximal and distal axons and RGC somata revealed that different neuronal domains exhibit differential vulnerability, with distal axon segments showing more severe degeneration compared with proximal segments and RGC somata. Importantly, we found that Sarm1 KO had a profound effect in the distal optic nerve by suppressing axonal degeneration by up to 50% in the first 2 weeks after IA-TBI, with a continued but lower effect at 3 weeks, while also suppressing microglial activation. Sarm1 KO had no evident effect on the initial traumatic disconnection and did not ameliorate the proximal optic axonopathy or the subsequent attrition of RGCs, indicating that the fate of different axonal segments in the course of TAI may depend on distinct molecular programs within axons.


Assuntos
Axônios , Lesões Encefálicas Traumáticas , Camundongos , Animais , Axônios/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Lesões Encefálicas Traumáticas/patologia , Nervo Óptico/patologia , Camundongos Knockout , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo
8.
Ophthalmol Glaucoma ; 6(2): 147-159, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36038107

RESUMO

PURPOSE: To investigate the efficacy of a deep learning regression method to predict macula ganglion cell-inner plexiform layer (GCIPL) and optic nerve head (ONH) retinal nerve fiber layer (RNFL) thickness for use in glaucoma neuroprotection clinical trials. DESIGN: Cross-sectional study. PARTICIPANTS: Glaucoma patients with good quality macula and ONH scans enrolled in 2 longitudinal studies, the African Descent and Glaucoma Evaluation Study and the Diagnostic Innovations in Glaucoma Study. METHODS: Spectralis macula posterior pole scans and ONH circle scans on 3327 pairs of GCIPL/RNFL scans from 1096 eyes (550 patients) were included. Participants were randomly distributed into a training and validation dataset (90%) and a test dataset (10%) by participant. Networks had access to GCIPL and RNFL data from one hemiretina of the probe eye and all data of the fellow eye. The models were then trained to predict the GCIPL or RNFL thickness of the remaining probe eye hemiretina. MAIN OUTCOME MEASURES: Mean absolute error (MAE) and squared Pearson correlation coefficient (r2) were used to evaluate model performance. RESULTS: The deep learning model was able to predict superior and inferior GCIPL thicknesses with a global r2 value of 0.90 and 0.86, r2 of mean of 0.90 and 0.86, and mean MAE of 3.72 µm and 4.2 µm, respectively. For superior and inferior RNFL thickness predictions, model performance was slightly lower, with a global r2 of 0.75 and 0.84, r2 of mean of 0.81 and 0.82, and MAE of 9.31 µm and 8.57 µm, respectively. There was only a modest decrease in model performance when predicting GCIPL and RNFL in more severe disease. Using individualized hemiretinal predictions to account for variability across patients, we estimate that a clinical trial can detect a difference equivalent to a 25% treatment effect over 24 months with an 11-fold reduction in the number of patients compared to a conventional trial. CONCLUSIONS: Our deep learning models were able to accurately estimate both macula GCIPL and ONH RNFL hemiretinal thickness. Using an internal control based on these model predictions may help reduce clinical trial sample size requirements and facilitate investigation of new glaucoma neuroprotection therapies. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.


Assuntos
Aprendizado Profundo , Glaucoma , Humanos , Estudos Transversais , Neuroproteção , Pressão Intraocular , Fibras Nervosas , Campos Visuais , Células Ganglionares da Retina , Tomografia de Coerência Óptica/métodos , Ensaios Clínicos como Assunto , Glaucoma/diagnóstico
9.
Neuron ; 110(16): 2516-2519, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35981522

RESUMO

In this issue of Neuron, three studies establish new strategies to uncover mediators of retinal neuroprotection and optic nerve regeneration. Tian et al. (2022) carry out a multi-omics screen and identify transcriptional regulators of axon injury signaling leading to cell death; Jacobi et al. (2022) and Li et al. (2022) combine retrograde tracing and single-cell RNA-seq (scRNA-seq) to uncover molecular targets for axon regeneration.


Assuntos
Traumatismos do Nervo Óptico , Axônios/fisiologia , Humanos , Regeneração Nervosa/fisiologia , Retina , Células Ganglionares da Retina/fisiologia
10.
Am J Ophthalmol Case Rep ; 26: 101460, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35313474

RESUMO

Purpose: Polymorphous low-grade adenocarcinoma is a tumor of the salivary glands that typically localizes within the oral cavity. We present a case of isolated third cranial nerve palsy as the initial presentation of polymorphous low-grade adenocarcinoma involving the left cavernous sinus in a patient status post glaucoma surgery. Observations: A 68-year-old woman status post glaucoma drainage device implantation in her left eye presented with an isolated left third nerve palsy ten weeks postoperatively. Differential diagnoses included microvascular ischemic neuropathy, postoperative ptosis, and compressive mass. MRI revealed a left cavernous sinus mass, and subsequent excisional biopsy revealed a diagnosis of polymorphous low-grade adenocarcinoma. Conclusions: There are few cases reporting polymorphous low-grade adenocarcinoma originating from and extending beyond the nasopharynx. This report emphasizes an unexpected neuro-ophthalmic manifestation of this salivary gland tumor.

11.
Surv Ophthalmol ; 67(5): 1467-1475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35189184

RESUMO

Superior segmental optic nerve hypoplasia (SSONH) is a congenital condition characterized by developmental abnormalities of the superior optic disc and an underappreciated differential diagnosis for glaucoma. The reported prevalence is less than 1%, although likely underestimated due to the difficulties with diagnosis. The exact pathophysiology of SSONH remains elusive, but a mechanism involving developmental attrition of retinal ganglion cells has been proposed, and maternal diabetes is recognized as a major risk factor. SSONH often is observed incidentally, and the patients typically are then evaluated for an acquired optic atrophy, often glaucoma because of the presence of inferior visual field defects. There are 4 characteristic signs of SSONH: superior entrance of the central retinal artery, superior disc pallor, superior peripapillary halo, and thinning of the superior peripapillary nerve fiber layer; however, the presence of these signs is variable. Optical coherence tomography can be helpful in distinguishing SSONH by demonstrating superonasal retinal nerve fiber layer thinning, as compared to the inferotemporal thinning seen in glaucoma, and an aberrant extension of retinal pigment epithelium over Bruch membrane. Overall, the prognosis of SSONH is favorable, with a non-progressive course. It is essential that ophthalmologists recognize and differentiate SSONH from glaucoma to avoid misdiagnosis and unnecessary treatment.


Assuntos
Glaucoma , Disco Óptico , Hipoplasia do Nervo Óptico , Humanos , Disco Óptico/anormalidades , Células Ganglionares da Retina , Tomografia de Coerência Óptica/métodos , Testes de Campo Visual
12.
Invest Ophthalmol Vis Sci ; 62(9): 30, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34283208

RESUMO

Purpose: To evaluate the integrative potential of neural stem cells (NSCs) with the visual system and characterize effects on the survival and axonal regeneration of axotomized retinal ganglion cells (RGCs). Methods: For in vitro studies, primary, postnatal rat RGCs were directly cocultured with human NSCs or cultured in NSC-conditioned media before their survival and neurite outgrowth were assessed. For in vivo studies, human NSCs were transplanted into the transected rat optic nerve, and immunohistology of the retina and optic nerve was performed to evaluate RGC survival, RGC axon regeneration, and NSC integration with the injured visual system. Results: Increased neurite outgrowth was observed in RGCs directly cocultured with NSCs. NSC-conditioned media demonstrated a dose-dependent effect on RGC survival and neurite outgrowth in culture. NSCs grafted into the lesioned optic nerve modestly improved RGC survival following an optic nerve transection (593 ± 164 RGCs/mm2 vs. 199 ± 58 RGCs/mm2; P < 0.01). Additionally, RGC axonal regeneration following an optic nerve transection was modestly enhanced by NSCs transplanted at the lesion site (61.6 ± 8.5 axons vs. 40.3 ± 9.1 axons, P < 0.05). Transplanted NSCs also differentiated into neurons, received synaptic inputs from regenerating RGC axons, and extended axons along the transected optic nerve to incorporate with the visual system. Conclusions: Human NSCs promote the modest survival and axonal regeneration of axotomized RGCs that is partially mediated by diffusible NSC-derived factors. Additionally, NSCs integrate with the injured optic nerve and have the potential to form neuronal relays to restore retinofugal connections.


Assuntos
Axônios/patologia , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/patologia , Traumatismos do Nervo Óptico/diagnóstico , Nervo Óptico/patologia , Animais , Axotomia , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Humanos , Traumatismos do Nervo Óptico/metabolismo , Ratos , Ratos Endogâmicos F344 , Ratos Transgênicos , Células Ganglionares da Retina/patologia
13.
Ophthalmol Glaucoma ; 4(5): 541-549, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33529795

RESUMO

PURPOSE: To evaluate the thinning of the circumpapillary retinal nerve fiber layer (cpRNFL) and macular ganglion cell-inner plexiform layer (mGCIPL) in primary open-angle glaucoma eyes with and without a history of disc hemorrhage (DH). DESIGN: Observational cohort study. PARTICIPANTS: Thirty-nine 39 eyes (34 participants) with DH and 117 eyes (104 participants) without DH from the Diagnostic Innovations in Glaucoma Study and the African Decent and Glaucoma Evaluation Study. METHODS: Participants had at least 1.5 years of follow-up, with a minimum of 3 visits with biannual spectral-domain OCT cpRNFL and mGCIPL thickness measurements and visual fields (VFs). The rates of cpRNFL and mGCIPL thinning were calculated using mixed-effects models. The dynamic range-based normalized rates of cpRNFL and mGCIPL thinning were calculated and compared between the DH and non-DH groups. MAIN OUTCOME MEASURES: Rates of cpRNFL and mGCIPL thinning. RESULTS: The rate of mGCIPL thinning was significantly faster in the DH group compared with the non-DH group (-0.62 µm/year vs. -0.38 µm/year; P = 0.024). The rate of cpRNFL thinning in the DH quadrant and rate of mGCIPL thinning in the inferotemporal sector in the DH group were faster than the corresponding regions in the non-DH group after adjusting for intraocular pressure (-1.33 µm/year vs. -0.58 µm/year; P = 0.053) and race (-0.82 µm/year vs. -0.44 µm/year; P = 0.048). In the DH group, percent rate of loss was significantly faster for the mGCIPL than the cpRNFL (-1.59 %/year vs. -1.31 %/year; P = 0.046). Rates of mGCIPL thinning were associated weakly with mean deviation slope, VF index slope, and guided progression analysis (GPA). The areas under the receiver operating characteristic curve for VF progression were 0.75 for mGCIPL and 0.56 for cpRNFL in the DH group. CONCLUSIONS: The rate of mGCIPL and cpRNFL thinning was faster in DH eyes than non-DH eyes. Compared with cpRNFL, mGCIPL showed higher proportional rates of thinning and greater association with functional progression. In addition to cpRNFL, clinicians should consider incorporating mGCIPL imaging to monitor glaucoma progression, especially in glaucoma eyes with DH.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Disco Óptico , Glaucoma de Ângulo Aberto/diagnóstico , Hemorragia , Humanos , Fibras Nervosas , Células Ganglionares da Retina , Tomografia de Coerência Óptica
14.
Am J Ophthalmol ; 229: 26-33, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33626360

RESUMO

PURPOSE: To examine whether glaucomatous central visual field abnormalities can be more effectively detected using a qualitative, expert evaluation of the 10-2 test compared with the topographically corresponding central 12 locations of the 24-2 test (C24-2). DESIGN: Cross-sectional study. METHODS: Eyes with a glaucomatous optic nerve appearance or ocular hypertension (n = 523) and healthy eyes (n = 107) were included as cases and control subjects, respectively. The 10-2 and C24-2 visual field results of all eyes were graded by 4 glaucoma specialists for the probability that central visual field abnormalities were present. RESULTS: The sensitivity of the 10-2 and C24-2 tests for detecting the cases at 95% specificity were not significantly different (e.g., 32.2% and 31.4%, respectively, for grader 1, P = .87; all graders P ≥ .25). At 95% specificity, the pattern standard deviation values from these tests had a similar sensitivity to the qualitative evaluation for the C24-2 test for all graders (P ≥ .083), but it had a significantly higher sensitivity than the qualitative evaluation for the 10-2 test for 3 graders (P ≤ .016). CONCLUSIONS: The similarity in performance of the 10-2 and C24-2 test suggests that the increased sampling density of the former does not significantly improve the detection of central visual field abnormalities, even when based on expert assessment. These findings should not be taken to mean that the 10-2 test is not useful, but it underscores the need for its utility to be clearly established before incorporating it as routine glaucoma standard of care.


Assuntos
Glaucoma , Doenças do Nervo Óptico , Estudos Transversais , Glaucoma/diagnóstico , Humanos , Pressão Intraocular , Sensibilidade e Especificidade , Transtornos da Visão/diagnóstico , Testes de Campo Visual , Campos Visuais
15.
Proc Natl Acad Sci U S A ; 117(52): 33597-33607, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318207

RESUMO

Axon injury is a hallmark of many neurodegenerative diseases, often resulting in neuronal cell death and functional impairment. Dual leucine zipper kinase (DLK) has emerged as a key mediator of this process. However, while DLK inhibition is robustly protective in a wide range of neurodegenerative disease models, it also inhibits axonal regeneration. Indeed, there are no genetic perturbations that are known to both improve long-term survival and promote regeneration. To identify such a neuroprotective target, we conducted a set of complementary high-throughput screens using a protein kinase inhibitor library in human stem cell-derived retinal ganglion cells (hRGCs). Overlapping compounds that promoted both neuroprotection and neurite outgrowth were bioinformatically deconvoluted to identify specific kinases that regulated neuronal death and axon regeneration. This work identified the role of germinal cell kinase four (GCK-IV) kinases in cell death and additionally revealed their unexpected activity in suppressing axon regeneration. Using an adeno-associated virus (AAV) approach, coupled with genome editing, we validated that GCK-IV kinase knockout improves neuronal survival, comparable to that of DLK knockout, while simultaneously promoting axon regeneration. Finally, we also found that GCK-IV kinase inhibition also prevented the attrition of RGCs in developing retinal organoid cultures without compromising axon outgrowth, addressing a major issue in the field of stem cell-derived retinas. Together, these results demonstrate a role for the GCK-IV kinases in dissociating the cell death and axonal outgrowth in neurons and their druggability provides for therapeutic options for neurodegenerative diseases.


Assuntos
Axônios/enzimologia , Axônios/patologia , Sistema Nervoso Central/patologia , Quinases do Centro Germinativo/metabolismo , Regeneração Nervosa , Animais , Sequência de Bases , Sistemas CRISPR-Cas/genética , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dependovirus/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos C57BL , Regeneração Nervosa/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Traumatismos do Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/patologia , Organoides/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
J Vis Exp ; (163)2020 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-32955495

RESUMO

Retinal ganglion cell (RGC) axons converge at the optic nerve head to convey visual information from the retina to the brain. Pathologies such as glaucoma, trauma, and ischemic optic neuropathies injure RGC axons, disrupt transmission of visual stimuli, and cause vision loss. Animal models simulating RGC axon injury include optic nerve crush and transection paradigms. Each of these models has inherent advantages and disadvantages. An optic nerve crush is generally less severe than a transection and can be used to assay axon regeneration across the lesion site. However, differences in crush force and duration can affect tissue responses, resulting in variable reproducibility and lesion completeness. With optic nerve transection, there is a severe and reproducible injury that completely lesions all axons. However, transecting the optic nerve dramatically alters the blood brain barrier by violating the optic nerve sheath, exposing the optic nerve to the peripheral environment. Moreover, regeneration beyond a transection site cannot be assessed without reapposing the cut nerve ends. Furthermore, distinct degenerative changes and cellular pathways are activated by either a crush or transection injury. The method described here incorporates the advantages of both optic nerve crush and transection models while mitigating the disadvantages. Hydrostatic pressure delivered into the optic nerve by microinjection completely transects the optic nerve while maintaining the integrity of the optic nerve sheath. The transected optic nerve ends are reapposed to allow for axon regeneration assays. A potential limitation of this method is the inability to visualize the complete transection, a potential source of variability. However, visual confirmation that the visible portion of the optic nerve has been transected is indicative of a complete optic nerve transection with 90-95% success. This method could be applied to assess axon regeneration promoting strategies in a transection model or investigate interventions that target the axonal compartments.


Assuntos
Axônios/fisiologia , Modelos Animais de Doenças , Traumatismos do Nervo Óptico/patologia , Células Ganglionares da Retina/patologia , Animais , Axônios/patologia , Pressão Hidrostática/efeitos adversos , Bainha de Mielina/fisiologia , Compressão Nervosa , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/etiologia , Ratos , Reprodutibilidade dos Testes
17.
Vision (Basel) ; 4(3)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32883010

RESUMO

PURPOSE OF REVIEW: to provide a prospective on the current mechanisms by which SARS-CoV-2 enters cells and replicates, and its implications for ocular transmission. The literature was analyzed to understand ocular transmission as well as molecular mechanisms by which SARS-CoV-2 enters cells and replicates. Analysis of gene expression profiles from available datasets, published immunohistochemistry, as well as current literature was reviewed, to assess the likelihood that ocular inoculation of SARS-CoV-2 results in systemic infection. RECENT FINDINGS: The ocular surface and retina have the necessary proteins, Transmembrane Serine Protease 2 (TMPRSS2), CD147, Angiotensin-Converting Enzyme 2 (ACE2) and Cathepsin L (CTSL) necessary to be infected with SARS-CoV-2. In addition to direct ocular infection, virus carried by tears through the nasolacrimal duct to nasal epithelium represent a means of ocular inoculation. SUMMARY: There is evidence that SARS-CoV-2 may either directly infect cells on the ocular surface, or virus can be carried by tears through the nasolacrimal duct to infect the nasal or gastrointestinal epithelium.

18.
Am J Ophthalmol ; 220: 45-52, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32645310

RESUMO

PURPOSE: To compare the efficacy of intraoperative scleral application with subconjunctival injection of mitomycin C (MMC) in trabeculectomy. DESIGN: Prospective, randomized, interventional study. METHODS: This study took place in a single clinical practice in an academic setting. Patients had medically uncontrolled glaucoma as indicated by high intraocular pressure (IOP), worsening visual field, or optic nerve head changes in whom primary trabeculectomy was indicated. Patients were older than 18 years with medically uncontrolled glaucoma and no history of incisional glaucoma surgery. Patients were randomized to MMC delivered by preoperative subconjunctival injection or by intraoperative direct scleral application using surgical sponges during trabeculectomy. Comprehensive eye examinations were conducted at 1 day, 1 week, 6 weeks, 3 months, and 6 months postoperatively. Subconjunctival 5-fluorouracil injections were given postoperatively, as needed. The primary outcome was the proportion of patients who demonstrated IOP of <21 mm Hg and ≥30% reduction in IOP from baseline. Secondary outcome measures included the number of IOP-lowering medications, bleb morphology using the Indiana Bleb Appearance Grading Scale, and complication rates. RESULTS: Participants (n = 100) were randomized into groups matched for baseline demographics, glaucoma status, and baseline IOP. At 6 months, there were no significant differences between the injection (n = 38) and sponge (n = 40) groups in surgical success (P = .357), mean IOP (P = .707), number of glaucoma medications (P = 1.000), bleb height (P = .625), bleb extension (P = .216), bleb vascularity (P = .672), or complications rates. CONCLUSION: Both techniques of MMC delivery (subconjunctival injection and direct scleral application) resulted in comparable surgical outcomes and bleb morphologies.


Assuntos
Glaucoma de Ângulo Aberto/terapia , Pressão Intraocular/fisiologia , Mitomicina/administração & dosagem , Trabeculectomia/métodos , Idoso , Túnica Conjuntiva , Feminino , Seguimentos , Glaucoma de Ângulo Aberto/fisiopatologia , Humanos , Injeções , Período Intraoperatório , Masculino , Inibidores da Síntese de Ácido Nucleico/administração & dosagem , Estudos Prospectivos , Esclera , Resultado do Tratamento
19.
ACS Nano ; 14(7): 7823-7831, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32023037

RESUMO

Optical coherence tomography (OCT) has gained wide adoption in biological research and medical imaging due to its exceptional tissue penetration, 3D imaging speed, and rich contrast. However, OCT plays a relatively small role in molecular and cellular imaging due to the lack of suitable biomolecular contrast agents. In particular, while the green fluorescent protein has provided revolutionary capabilities to fluorescence microscopy by connecting it to cellular functions such as gene expression, no equivalent reporter gene is currently available for OCT. Here, we introduce gas vesicles, a class of naturally evolved gas-filled protein nanostructures, as genetically encodable OCT contrast agents. The differential refractive index of their gas compartments relative to surrounding aqueous tissue and their nanoscale motion enables gas vesicles to be detected by static and dynamic OCT. Furthermore, the OCT contrast of gas vesicles can be selectively erased in situ with ultrasound, allowing unambiguous assignment of their location. In addition, gas vesicle clustering modulates their temporal signal, enabling the design of dynamic biosensors. We demonstrate the use of gas vesicles as reporter genes in bacterial colonies and as purified contrast agents in vivo in the mouse retina. Our results expand the utility of OCT to image a wider variety of cellular and molecular processes.


Assuntos
Nanoestruturas , Tomografia de Coerência Óptica , Animais , Meios de Contraste , Imageamento Tridimensional , Camundongos , Ultrassonografia
20.
Mol Neurodegener ; 14(1): 44, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775817

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a major cause of CNS neurodegeneration and has no disease-altering therapies. It is commonly associated with a specific type of biomechanical disruption of the axon called traumatic axonal injury (TAI), which often leads to axonal and sometimes perikaryal degeneration of CNS neurons. We have previously used genome-scale, arrayed RNA interference-based screens in primary mouse retinal ganglion cells (RGCs) to identify a pair of related kinases, dual leucine zipper kinase (DLK) and leucine zipper kinase (LZK) that are key mediators of cell death in response to simple axotomy. Moreover, we showed that DLK and LZK are the major upstream triggers for JUN N-terminal kinase (JNK) signaling following total axonal transection. However, the degree to which DLK/LZK are involved in TAI/TBI is unknown. METHODS: Here we used the impact acceleration (IA) model of diffuse TBI, which produces TAI in the visual system, and complementary genetic and pharmacologic approaches to disrupt DLK and LZK, and explored whether DLK and LZK play a role in RGC perikaryal and axonal degeneration in response to TAI. RESULTS: Our findings show that the IA model activates DLK/JNK/JUN signaling but, in contrast to axotomy, many RGCs are able to recover from the injury and terminate the activation of the pathway. Moreover, while DLK disruption is sufficient to suppress JUN phosphorylation, combined DLK and LZK inhibition is required to prevent RGC cell death. Finally, we show that the FDA-approved protein kinase inhibitor, sunitinib, which has activity against DLK and LZK, is able to produce similar increases in RGC survival. CONCLUSION: The mitogen-activated kinase kinase kinases (MAP3Ks), DLK and LZK, participate in cell death signaling of CNS neurons in response to TBI. Moreover, sustained pharmacologic inhibition of DLK is neuroprotective, an effect creating an opportunity to potentially translate these findings to patients with TBI.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Sobrevivência Celular/fisiologia , MAP Quinase Quinase Quinases/metabolismo , Neurônios/metabolismo , Animais , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Zíper de Leucina/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Células Ganglionares da Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...