Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
FASEB Bioadv ; 1(8): 498-510, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31825015

RESUMO

Podocytes are key cells in maintaining the integrity of the glomerular filtration barrier and preventing albuminuria. Glycogen synthase kinase 3 (GSK3) is a multi-functional serine/threonine kinase existing as two distinct but related isoforms (α and ß). In the podocyte it has previously been reported that inhibition of the ß isoform is beneficial in attenuating a variety of glomerular disease models but loss of both isoforms is catastrophic. However, it is not known what the role of GSK3α is in these cells. We now show that GSK3α is present and dynamically modulated in podocytes. When GSK3α is transgenically knocked down specifically in the podocytes of mice it causes mild but significant albuminuria by 6-weeks of life. Its loss also does not protect in models of diabetic or Adriamycin-induced nephropathy. In vitro deletion of podocyte GSK3α causes cell death and impaired autophagic flux suggesting it is important for this key cellular process. Collectively this work shows that GSK3α is important for podocyte health and that augmenting its function may be beneficial in treating glomerular disease.

2.
Sci Rep ; 9(1): 10837, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346184

RESUMO

The increased inertia of very high-energy electrons (VHEEs) due to relativistic effects reduces scattering and enables irradiation of deep-seated tumours. However, entrance and exit doses are high for collimated or diverging beams. Here, we perform a study based on Monte Carlo simulations of focused VHEE beams in a water phantom, showing that dose can be concentrated into a small, well-defined volumetric element, which can be shaped or scanned to treat deep-seated tumours. The dose to surrounding tissue is distributed over a larger volume, which reduces peak surface and exit doses for a single beam by more than one order of magnitude compared with a collimated beam.


Assuntos
Simulação por Computador , Dosagem Radioterapêutica , Radioterapia/métodos , Elétrons , Método de Monte Carlo
3.
Nat Commun ; 10(1): 403, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679422

RESUMO

Albuminuria affects millions of people, and is an independent risk factor for kidney failure, cardiovascular morbidity and death. The key cell that prevents albuminuria is the terminally differentiated glomerular podocyte. Here we report the evolutionary importance of the enzyme Glycogen Synthase Kinase 3 (GSK3) for maintaining podocyte function in mice and the equivalent nephrocyte cell in Drosophila. Developmental deletion of both GSK3 isoforms (α and ß) in murine podocytes causes late neonatal death associated with massive albuminuria and renal failure. Similarly, silencing GSK3 in nephrocytes is developmentally lethal for this cell. Mature genetic or pharmacological podocyte/nephrocyte GSK3 inhibition is also detrimental; producing albuminuric kidney disease in mice and nephrocyte depletion in Drosophila. Mechanistically, GSK3 loss causes differentiated podocytes to re-enter the cell cycle and undergo mitotic catastrophe, modulated via the Hippo pathway but independent of Wnt-ß-catenin. This work clearly identifies GSK3 as a critical regulator of podocyte and hence kidney function.


Assuntos
Albuminúria/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Nefropatias/metabolismo , Rim/fisiologia , Podócitos/metabolismo , Albuminúria/sangue , Albuminúria/patologia , Albuminúria/urina , Animais , Ciclo Celular , Linhagem Celular , Modelos Animais de Doenças , Drosophila , Deleção de Genes , Inativação Gênica , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Via de Sinalização Hippo , Estimativa de Kaplan-Meier , Rim/patologia , Nefropatias/sangue , Nefropatias/patologia , Nefropatias/urina , Masculino , Camundongos , Podócitos/enzimologia , Podócitos/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica , Ratos Wistar , Insuficiência Renal , Verteporfina/farmacologia , beta Catenina/metabolismo
4.
Sci Rep ; 7(1): 2399, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28546551

RESUMO

Raman amplification arising from the excitation of a density echelon in plasma could lead to amplifiers that significantly exceed current power limits of conventional laser media. Here we show that 1-100 J pump pulses can amplify picojoule seed pulses to nearly joule level. The extremely high gain also leads to significant amplification of backscattered radiation from "noise", arising from stochastic plasma fluctuations that competes with externally injected seed pulses, which are amplified to similar levels at the highest pump energies. The pump energy is scattered into the seed at an oblique angle with 14 J sr-1, and net gains of more than eight orders of magnitude. The maximum gain coefficient, of 180 cm-1, exceeds high-power solid-state amplifying media by orders of magnitude. The observation of a minimum of 640 J sr-1 directly backscattered from noise, corresponding to ≈10% of the pump energy in the observation solid angle, implies potential overall efficiencies greater than 10%.

5.
Sci Rep ; 7: 43910, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28281679

RESUMO

Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lower-energy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5-10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30°-60° hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wakefield accelerators, including the development of staged high-energy accelerators.

6.
Sci Rep ; 7: 42354, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28176862

RESUMO

Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions.

7.
Sci Rep ; 5: 13333, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26290153

RESUMO

Stimulated Raman backscattering in plasma is potentially an efficient method of amplifying laser pulses to reach exawatt powers because plasma is fully broken down and withstands extremely high electric fields. Plasma also has unique nonlinear optical properties that allow simultaneous compression of optical pulses to ultra-short durations. However, current measured efficiencies are limited to several percent. Here we investigate Raman amplification of short duration seed pulses with different chirp rates using a chirped pump pulse in a preformed plasma waveguide. We identify electron trapping and wavebreaking as the main saturation mechanisms, which lead to spectral broadening and gain saturation when the seed reaches several millijoules for durations of 10's - 100's fs for 250 ps, 800 nm chirped pump pulses. We show that this prevents access to the nonlinear regime and limits the efficiency, and interpret the experimental results using slowly-varying-amplitude, current-averaged particle-in-cell simulations. We also propose methods for achieving higher efficiencies.

8.
Phys Med Biol ; 59(19): 5811-29, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25207591

RESUMO

Very high energy electrons (VHEE) in the range from 100-250 MeV have the potential of becoming an alternative modality in radiotherapy because of their improved dosimetry properties compared with MV photons from contemporary medical linear accelerators. Due to the need for accurate dosimetry of small field size VHEE beams we have performed dose measurements using EBT2 Gafchromic® film. Calibration of the film has been carried out for beams of two different energy ranges: 20 MeV and 165 MeV from conventional radio frequency linear accelerators. In addition, EBT2 film has been used for dose measurements with 135 MeV electron beams produced by a laser-plasma wakefield accelerator. The dose response measurements and percentage depth dose profiles have been compared with calculations carried out using the general-purpose FLUKA Monte Carlo (MC) radiation transport code. The impact of induced radioactivity on film response for VHEEs has been evaluated using the MC simulations. A neutron yield of the order of 10(-5) neutrons cm(-2) per incident electron has been estimated and induced activity due to radionuclide production is found to have a negligible effect on total dose deposition and film response. Neutron and proton contribution to the equivalent doses are negligible for VHEE. The study demonstrates that EBT2 Gafchromic film is a reliable dosimeter that can be used for dosimetry of VHEE. The results indicate an energy-independent response of the dosimeter for 20 MeV and 165 MeV electron beams and has been found to be suitable for dosimetry of VHEE.


Assuntos
Simulação por Computador , Elétrons , Dosimetria Fotográfica/métodos , Método de Monte Carlo , Aceleradores de Partículas , Imagens de Fantasmas , Radiometria/instrumentação , Calibragem , Dosimetria Fotográfica/instrumentação , Humanos , Nêutrons , Fótons/uso terapêutico , Prótons , Radiometria/métodos , Dosagem Radioterapêutica
9.
Rev Sci Instrum ; 84(11): 113302, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24289391

RESUMO

Compton side-scattering has been used to simultaneously downshift the energy of keV to MeV energy range photons while attenuating their flux to enable single-shot, spectrally resolved, measurements of high flux X-ray sources to be undertaken. To demonstrate the technique a 1 mm thick pixelated cadmium telluride detector has been used to measure spectra of Compton side-scattered radiation from a Cobalt-60 laboratory source and a high flux, high peak brilliance X-ray source of betatron radiation from a laser-plasma wakefield accelerator.

10.
Am J Physiol Renal Physiol ; 305(2): F182-8, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23698113

RESUMO

Podocytes are critically important for maintaining the integrity of the glomerular filtration barrier and preventing albuminuria. Recently, it has become clear that to achieve this, they need to be insulin sensitive and produce an optimal amount of VEGF-A. In other tissues, insulin has been shown to regulate VEGF-A release, but this has not been previously examined in the podocyte. Using in vitro and in vivo approaches, in the present study, we now show that insulin regulates VEGF-A in the podocyte in both mice and humans via the insulin receptor (IR). Insulin directly increased VEGF-A mRNA levels and protein production in conditionally immortalized wild-type human and murine podocytes. Furthermore, when podocytes were rendered insulin resistant in vitro (using stable short hairpin RNA knockdown of the IR) or in vivo (using transgenic podocyte-specific IR knockout mice), podocyte VEGF-A production was impaired. Importantly, in vivo, this occurs before the development of any podocyte damage due to podocyte insulin resistance. Modulation of VEGF-A by insulin in the podocyte may be another important factor in the development of glomerular disease associated with conditions in which insulin signaling to the podocyte is deranged.


Assuntos
Insulina/metabolismo , Podócitos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Humanos , Resistência à Insulina , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismo
11.
J Pathol ; 230(1): 95-106, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23299523

RESUMO

Podocytes are crucial for preventing the passage of albumin into the urine and, when lost, are associated with the development of albuminuria, renal failure and cardiovascular disease. Podocytes have limited capacity to regenerate, therefore pro-survival mechanisms are critically important. Insulin-like growth factor-II (IGF-II) is a potent survival and growth factor; however, its major function is thought to be in prenatal development, when circulating levels are high. IGF-II has only previously been reported to continue to be expressed in discrete regions of the brain into adulthood in rodents, with systemic levels being undetectable. Using conditionally immortalized human and ex vivo adult mouse cells of the glomerulus, we demonstrated the podocyte to be the major glomerular source and target of IGF-II; it signals to this cell via the IGF-I receptor via the PI3 kinase and MAPK pathways. Functionally, a reduction in IGF signalling causes podocyte cell death in vitro and glomerular disease in vivo in an aged IGF-II transgenic mouse that produces approximately 60% of IGF-II due to a lack of the P2 promoter of this gene. Collectively, this work reveals the fundamental importance of IGF-II in the mature podocyte for glomerular health across mammalian species.


Assuntos
Fator de Crescimento Insulin-Like II/metabolismo , Podócitos/citologia , Podócitos/metabolismo , Transdução de Sinais/fisiologia , Envelhecimento/fisiologia , Animais , Linhagem Celular Transformada , Sobrevivência Celular/fisiologia , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like II/genética , Glomérulos Renais/citologia , Glomérulos Renais/fisiologia , Células Mesangiais/citologia , Células Mesangiais/metabolismo , Camundongos , Camundongos Transgênicos , RNA Interferente Pequeno/genética
12.
Lung Cancer ; 77(2): 443-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22487430

RESUMO

VEGF is a key mediator of tumour growth and metastasis and is considered central to the formation of exudative pleural effusions. This study examined the relationship between levels of VEGF and its soluble receptor, sVEGFR-1 in the pleural fluid and plasma of patients with malignant pleural effusions and their association with pleurodesis outcomes and survival. 103 patients with malignant pleural effusions were recruited at their first presentation. Follow-up was to 6 months or death. Survival and pleurodesis outcomes were robustly ascertained. VEGF and sVEGFR-1 were measured in pleural fluid and plasma by ELISA. VEGF and sVEGFR-1 were present in significantly higher concentrations in pleural fluid than plasma. There was no significant correlation between mediators within or between sample types. There was no association between baseline pleural fluid VEGF or sVEGFR-1 levels and pleurodesis failure. In both sample types, survival was inversely associated with sVEGFR-1 and within the non-small cell lung cancer sub-group (n=26), a highly significant association between increased pleural fluid VEGF and sVEGFR-1 and reduced survival was demonstrated (p=0.02 and 0.004 respectively). In conclusion, we have shown for the first time that sVEGFR-1 can be reproducibly measured in pleural fluid from malignant effusions. High levels at presentation in those with non-small cell carcinoma are strongly associated with poor outcomes.


Assuntos
Neoplasias/metabolismo , Neoplasias/mortalidade , Derrame Pleural Maligno/metabolismo , Pleurodese , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/complicações , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/complicações , Derrame Pleural Maligno/etiologia , Prognóstico , Fator A de Crescimento do Endotélio Vascular/sangue , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/sangue
13.
Med Phys ; 39(6Part17): 3813-3814, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28517464

RESUMO

PURPOSE: Progress in the development of compact high-energy pulsed laser- plasma wakefield accelerators is opening up the potential for using Very High Energy Electron (VHEEs) beams in the range of 150 - 250 MeV for biomedical studies. Initial experiments using VHEE for this purpose have been carried out using the ALPHA-X laser-plasma wakefield accelerator beam line at the University of Strathclyde, Glasgow, UK. The purpose of this investigation is to use Monte Carlo simulations to plan experiments and compare with characterization of the interaction of the VHEE beam using a dosimeter. METHODS: An experiment using the VHEE beam to irradiate a muscle-equivalent BANG polymer gel dosimeter has been carried out. Simulations have been used to prepare for the experiments. These were undertaken using the expected average energy for a pulse set and an energy spread approximated by Gaussian distribution. The model was implemented in FLUKA Monte Carlo code with follow up modeling using the Geant4 toolkit. The results have been compared with 1mm̂3 voxel laser CT based measurements of the dose deposited in the BANG dosimeter and with measurement of the induced radioactivity. RESULTS: The results of the measured dose from induced radioactivity have been compared with data from the FLUKA simulations. The beam model based on an average energy of particles in irradiation gives an acceptable estimate of the induced radioactivity and the dose deposited in the BANG dosimeter. Comparison with the dosimeter scanned profiles shows that the structure of the spectra of VHEE beams in the experiment and secondary scattered particles in the beam line should be accounted for in any model. Such model description of the VHEE beam for the ALPHA-X beam line has been developed. CONCLUSIONS: Monte Carlo simulations using the FLUKA code is an efficient way to plan a VHEE experiment and analyze data from measurements.

14.
Rev Sci Instrum ; 82(9): 096104, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21974631

RESUMO

Gas-filled capillary discharge waveguides are important structures in laser-plasma interaction applications, such as the laser wakefield accelerator. We present the methodology for applying femtosecond laser micromachining in the production of capillary channels (typically 200-300 µm in diameter and 30-40 mm in length), including the formalism for capillaries with a linearly tapered diameter. The latter is demonstrated to possess a smooth variation in diameter along the length of the capillary (tunable with the micromachining trajectories). This would lead to a longitudinal plasma density gradient in the waveguide that may dramatically improve the laser-plasma interaction efficiency in applications.

15.
Rev Sci Instrum ; 82(6): 063505, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21721689

RESUMO

We present an all solid-state, high voltage pulsed power supply for inducing stable plasma formation (density ∼10(18) cm(-3)) in gas-filled capillary discharge waveguides. The pulser (pulse duration of 1 µs) is based on transistor switching and wound transmission line transformer technology. For a capillary of length 40 mm and diameter 265 µm and gas backing pressure of 100 mbar, a fast voltage pulse risetime of 95 ns initiates breakdown at 13 kV along the capillary. A peak current of ∼280 A indicates near complete ionization, and the r.m.s. temporal jitter in the current pulse is only 4 ns. Temporally stable plasma formation is crucial for deploying capillary waveguides as plasma channels in laser-plasma interaction experiments, such as the laser wakefield accelerator.

16.
Am J Physiol Renal Physiol ; 300(1): F40-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20980411

RESUMO

The endothelial glycocalyx is a gel-like layer which covers the luminal side of blood vessels. The glomerular endothelial cell (GEnC) glycocalyx is composed of proteoglycan core proteins, glycosaminoglycan (GAG) chains, and sialoglycoproteins and has been shown to contribute to the selective sieving action of the glomerular capillary wall. Damage to the systemic endothelial glycocalyx has recently been associated with the onset of albuminuria in diabetics. In this study, we analyze the effects of high glucose on the biochemical structure of the GEnC glycocalyx and quantify functional changes in its protein-restrictive action. We used conditionally immortalized human GEnC. Proteoglycans were analyzed by Western blotting and indirect immunofluorescence. Biosynthesis of GAG was analyzed by radiolabeling and quantified by anion exchange chromatography. FITC-albumin was used to analyze macromolecular passage across GEnC monolayers using an established in vitro model. We observed a marked reduction in the biosynthesis of GAG by the GEnC under high-glucose conditions. Further analysis confirmed specific reduction in heparan sulfate GAG. Expression of proteoglycan core proteins remained unchanged. There was also a significant increase in the passage of albumin across GEnC monolayers under high-glucose conditions without affecting interendothelial junctions. These results reproduce changes in GEnC barrier properties caused by enzymatic removal of heparan sulfate from the GEnC glycocalyx. They provide direct evidence of high glucose-induced alterations in the GEnC glycocalyx and demonstrate changes to its function as a protein-restrictive layer, thus implicating glycocalyx damage in the pathogenesis of proteinuria in diabetes.


Assuntos
Glucose/administração & dosagem , Glicocálix/metabolismo , Glomérulos Renais/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Glucose/farmacologia , Glicocálix/ultraestrutura , Glicosaminoglicanos/biossíntese , Proteoglicanas de Heparan Sulfato/biossíntese , Humanos , Glomérulos Renais/citologia , Glomérulos Renais/fisiopatologia
17.
Phys Rev Lett ; 105(21): 215007, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-21231315

RESUMO

Progress in laser wakefield accelerators indicates their suitability as a driver of compact free-electron lasers (FELs). High brightness is defined by the normalized transverse emittance, which should be less than 1π mm mrad for an x-ray FEL. We report high-resolution measurements of the emittance of 125 MeV, monoenergetic beams from a wakefield accelerator. An emittance as low as 1.1±0.1π mm mrad is measured using a pepper-pot mask. This sets an upper limit on the emittance, which is comparable with conventional linear accelerators. A peak transverse brightness of 5×10¹5 A m⁻¹ rad⁻¹ makes it suitable for compact XUV FELs.

18.
Diabetologia ; 52(9): 1944-52, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19533082

RESUMO

AIMS/HYPOTHESIS: Peroxisome proliferator-activated receptor (PPAR) gamma agonists are used increasingly in the treatment of type 2 diabetes. In the context of renal disease, PPARgamma agonists reduce microalbuminuria in diabetic nephropathy; however, the mechanisms underlying this effect are unknown. Glomerular podocytes are newly characterised insulin-sensitive cells and there is good evidence that they are targeted in diabetic nephropathy. In this study we investigated the functional and molecular effects of the PPARgamma agonist rosiglitazone on human podocytes. METHODS: Conditionally immortalised human podocytes were cultured with rosiglitazone and functional effects were measured with glucose-uptake assays. The effect of rosiglitazone on glucose uptake was also measured in 3T3-L1 adipocytes, nephrin-deficient podocytes, human glomerular endothelial cells, proximal tubular cells and podocytes treated with the NEFA palmitate. The role of the glucose transporter GLUT1 was investigated with immunofluorescence and small interfering RNA knockdown and the plasma membrane expression of GLUT1 was determined with bis-mannose photolabelling. RESULTS: Rosiglitazone significantly increased glucose uptake in wild-type podocytes and this was associated with translocation of GLUT1 to the plasma membrane. This effect was blocked with GLUT1 small interfering RNA. Nephrin-deficient podocytes, glomerular endothelial cells and proximal tubular cells did not increase glucose uptake in response to either insulin or rosiglitazone. Furthermore, rosiglitazone significantly increased basal and insulin-stimulated glucose uptake when podocytes were treated with the NEFA palmitate. CONCLUSIONS/INTERPRETATION: In conclusion, rosiglitazone has a direct and protective effect on glucose uptake in wild-type human podocytes. This represents a novel mechanism by which PPARgamma agonists may improve podocyte function in diabetic nephropathy.


Assuntos
Transportador de Glucose Tipo 1/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Glomérulos Renais/metabolismo , Podócitos/metabolismo , Tiazolidinedionas/farmacologia , Transporte Biológico/efeitos dos fármacos , Técnicas de Cultura de Células , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Primers do DNA , Transportador de Glucose Tipo 1/efeitos dos fármacos , Transportador de Glucose Tipo 1/genética , Humanos , Glomérulos Renais/efeitos dos fármacos , Cinética , Podócitos/efeitos dos fármacos , RNA/genética , Rosiglitazona , Transfecção
19.
Biochem Soc Trans ; 34(Pt 2): 209-12, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16545078

RESUMO

Several members of the extensive family of small GTP-binding proteins are regulated by insulin, and have been implicated in insulin action on glucose uptake. These proteins are themselves negatively regulated by a series of specific GAPs (GTPase-activating proteins). Interestingly, there is increasing evidence to suggest that PKB (protein kinase B)-dependent phosphorylation of some GAPs may relieve this negative regulation and so lead to the activation of the target small GTP-binding protein. We review recent evidence that this may be the case, and place specific emphasis on the role of these pathways in insulin-stimulated glucose uptake.


Assuntos
Insulina/farmacologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Animais , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Biochem Soc Trans ; 33(Pt 2): 346-9, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15787603

RESUMO

The activation of protein kinase B (or Akt) plays a central role in the stimulation of glucose uptake by insulin. Currently, however, numerous questions remain unanswered regarding the role of this kinase in bringing about this effect. For example, we do not know precisely where in the GLUT4 trafficking pathway this kinase acts. Nor do we know which protein substrates are responsible for mediating the effects of protein kinase B, although two recently identified proteins (AS160 and PIKfyve) may play a role. This paper addresses these important questions by reviewing recent progress in the field.


Assuntos
Glucose/metabolismo , Insulina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Transporte Biológico , Transportador de Glucose Tipo 4 , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Musculares/metabolismo , Proteínas Proto-Oncogênicas c-akt , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA