Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Can J Physiol Pharmacol ; 98(8): 548-556, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32762631

RESUMO

The aim of this study was to determine new insights into the molecular mechanisms involved in the antiproliferative action of menadione + calcitriol (MEN+D) on MCF-7 cells. After 24 h, MEN+D inhibited the cell growth but was not observed with each single treatment. The combined drugs reduced the mitochondrial respiration at that time, as judged by an increase in the proton leak and a decrease in the ATP generation and coupling efficiency. At longer times, 48 or 96 h, either D or MEN reduced the proliferation, but the effect was higher when both drugs were used together. The combined treatment increased the superoxide anion ([Formula: see text]) and nitric oxide (NO•) contents as well as acidic vesicular organelles (AVOs) formation. The percentage of cells showing the lower mitochondrial membrane potential (ΔΨm) was highly increased by the combined therapy. LC3-II protein expression was enhanced by any treatment. In conclusion, the antiproliferative action of MEN+D involves oxidative/nitrosative stress, mitochondrial alteration, and autophagy. This combined therapy could be useful to treat breast cancer cells because it inhibits multiple oncogenic pathways more effectively than each single agent.


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias da Mama/patologia , Calcitriol/farmacologia , Mitocôndrias/efeitos dos fármacos , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Vitamina K 3/farmacologia , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia
2.
BMC Cancer ; 13: 119, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23497279

RESUMO

BACKGROUND: Vitamin D transcriptional effects were linked to tumor growth control, however, the hormone targets were determined in cell cultures exposed to supra physiological concentrations of 1,25(OH)(2)D(3) (50-100nM). Our aim was to evaluate the transcriptional effects of 1,25(OH)(2)D(3) in a more physiological model of breast cancer, consisting of fresh tumor slices exposed to 1,25(OH)(2)D(3) at concentrations that can be attained in vivo. METHODS: Tumor samples from post-menopausal breast cancer patients were sliced and cultured for 24 hours with or without 1,25(OH)(2)D(3) 0.5nM or 100nM. Gene expression was analyzed by microarray (SAM paired analysis, FDR≤0.1) or RT-qPCR (p≤0.05, Friedman/Wilcoxon test). Expression of candidate genes was then evaluated in mammary epithelial/breast cancer lineages and cancer associated fibroblasts (CAFs), exposed or not to 1,25(OH)(2)D(3) 0.5nM, using RT-qPCR, western blot or immunocytochemistry. RESULTS: 1,25(OH)(2)D(3) 0.5nM or 100nM effects were evaluated in five tumor samples by microarray and seven and 136 genes, respectively, were up-regulated. There was an enrichment of genes containing transcription factor binding sites for the vitamin D receptor (VDR) in samples exposed to 1,25(OH)(2)D(3) near physiological concentration. Genes up-modulated by both 1,25(OH)(2)D(3) concentrations were CYP24A1, DPP4, CA2, EFTUD1, TKTL1, KCNK3. Expression of candidate genes was subsequently evaluated in another 16 samples by RT-qPCR and up-regulation of CYP24A1, DPP4 and CA2 by 1,25(OH)(2)D(3) was confirmed. To evaluate whether the transcripitonal targets of 1,25(OH)(2)D(3) 0.5nM were restricted to the epithelial or stromal compartments, gene expression was examined in HB4A, C5.4, SKBR3, MDA-MB231, MCF-7 lineages and CAFs, using RT-qPCR. In epithelial cells, there was a clear induction of CYP24A1, CA2, CD14 and IL1RL1. In fibroblasts, in addition to CYP24A1 induction, there was a trend towards up-regulation of CA2, IL1RL1, and DPP4. A higher protein expression of CD14 in epithelial cells and CA2 and DPP4 in CAFs exposed to 1,25(OH)(2)D(3) 0.5nM was detected. CONCLUSIONS: In breast cancer specimens a short period of 1,25(OH)(2)D(3) exposure at near physiological concentration modestly activates the hormone transcriptional pathway. Induction of CYP24A1, CA2, DPP4, IL1RL1 expression appears to reflect 1,25(OH)(2)D(3) effects in epithelial as well as stromal cells, however, induction of CD14 expression is likely restricted to the epithelial compartment.


Assuntos
Neoplasias da Mama/genética , Calcitriol/farmacologia , Carcinoma Ductal de Mama/genética , Transcrição Gênica/efeitos dos fármacos , Vitaminas/farmacologia , Neoplasias da Mama/metabolismo , Calcitriol/administração & dosagem , Carcinoma Ductal de Mama/metabolismo , Regulação para Baixo , Células Epiteliais , Feminino , Fibroblastos , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , RNA/análise , Estatísticas não Paramétricas , Técnicas de Cultura de Tecidos , Células Tumorais Cultivadas , Regulação para Cima , Vitaminas/administração & dosagem
3.
Cancer Invest ; 30(8): 560-70, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22931489

RESUMO

Calcitriol or 1,25(OH)(2)D(3) is a negative growth regulator of breast cancer cells. The aim of this study was to determine whether L-buthionine-S,R-sulfoximine, a glutathione-depleting drug, modifies the antiproliferative effects of 1,25(OH)(2)D(3) on MCF-7 cells. For comparison, we included studies in MCF-7 cells selected for vitamin D resistance and in human mammary epithelial cells transformed with SV40 and ras. Our data indicate that L-buthionine-S,R-sulfoximine enhances the growth inhibition of 1,25(OH)(2)D(3) in all transformed breast cell lines. This effect is mediated by ROS leading to apoptosis. In conclusion, BSO alters redox state and sensitizes breast cancer cells to 1,25(OH)(2)D(3)-mediated apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Butionina Sulfoximina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Vitamina D/análogos & derivados , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Oxirredução/efeitos dos fármacos , Vitamina D/farmacologia
4.
J Steroid Biochem Mol Biol ; 113(3-5): 227-32, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19429426

RESUMO

Calcitriol or 1,25(OH)(2)D(3) is a negative growth regulator of MCF-7 breast cancer cells. The growth arrest is due to apoptosis activation, which involves mitochondrial disruption. This effect is blunted in vitamin D resistant cells (MCF-7(DRes) cells). Menadione (MEN), a glutathione (GSH)-depleting compound, may potentiate antitumoral effects of anticancer drugs. The aim of this study was to investigate whether MEN enhances cellular responsiveness of MCF-7 cells to 1,25(OH)(2)D(3). Cells were cultured and treated with different concentrations of 1,25(OH)(2)D(3)+/-MEN or vehicle for 96 h. GSH levels and the activity of antioxidant enzymes were determined by spectrophotometry and ROS production by flow cytometry. Both drugs decreased growth and enhanced ROS in MCF-7 cells, obtaining the maximal effects when 1,25(OH)(2)D(3) was combined with MEN (P<0.01 vs. Control and vs. each compound alone). MCF-7(DRes) cells were not responsive to 1,25(OH)(2)D(3), but the cell proliferation was slightly inhibited by the combined treatment. Calcitriol and MEN separately enhanced antioxidant enzyme activities, but when they were used in combination, the effect was more pronounced (P<0.05 vs. Control and vs. each compound alone). MEN, calcitriol and the combined treatment decreased GSH levels (P<0.05 vs. Control). The data indicate that MEN potentiates the effect of 1,25(OH)(2)D(3) on growth arrest in MCF-7 cells by oxidative stress and increases the activities of antioxidant enzymes, probably as a compensatory mechanism.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Calcitriol , Linhagem Celular Tumoral/efeitos dos fármacos , Vitamina K 3 , Vitaminas , Animais , Antioxidantes/metabolismo , Calcitriol/farmacologia , Calcitriol/uso terapêutico , Linhagem Celular Tumoral/citologia , Forma Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Humanos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Vitamina K 3/farmacologia , Vitamina K 3/uso terapêutico , Vitaminas/farmacologia , Vitaminas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA