Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Steroid Biochem Mol Biol ; 231: 106307, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37030416

RESUMO

K vitamins are well known as essential cofactors for hepatic γ-carboxylation of coagulation factors, but their potential role in chronic diseases including cancer is understudied. K2, the most abundant form of vitamin K in tissues, exerts anti-cancer effects via diverse mechanisms which are not completely understood. Our studies were prompted by previous work demonstrating that the K2 precursor menadione synergized with 1,25 dihydroxyvitamin D3 (1,25(OH)2D3) to inhibit growth of MCF7 luminal breast cancer cells. Here we assessed whether K2 modified the anti-cancer effects of 1,25(OH)2D3 in triple negative breast cancer (TNBC) cell models. We examined the independent and combined effects of these vitamins on morphology, cell viability, mammosphere formation, cell cycle, apoptosis and protein expression in three TNBC cell models (MDA-MB-453, SUM159PT, Hs578T). We found that all three TNBC cell lines expressed low levels of the vitamin D receptor (VDR) and were modestly growth inhibited by 1,25(OH)2D3 in association with cell cycle arrest in G0/G1. Induction of differentiated morphology by 1,25(OH)2D3 was observed in two of the cell lines (MDA-MB-453, Hs578T). Treatment with K2 alone reduced viability of MDA-MB-453 and SUM159PT cells but not Hs578T cells. Co-treatment with 1,25(OH)2D3 and K2 significantly reduced viable cell number relative to either treatment alone in Hs578T and SUM159PT cells. The combination treatment induced G0/G1 arrest in MDA-MB-453 cells, Hs578T and SUM159PT cells. Combination treatment altered mammosphere size and morphology in a cell specific manner. Of particular interest, treatment with K2 increased VDR expression in SUM159PT cells suggesting that the synergistic effects in these cells may be secondary to increased sensitivity to 1,25(OH)2D3. The phenotypic effects of K2 in TNBC cells did not correlate with γ-carboxylation suggesting non-canonical actions. In summary, 1,25(OH)2D3 and K2 exert tumor suppressive effects in TNBC cells, inducing cell cycle arrest leading to differentiation and/or apoptosis depending on the specific cell line. Further mechanistic studies to clarify common and unique targets of these two fat soluble vitamins in TNBC are warranted.


Assuntos
Calcitriol , Neoplasias de Mama Triplo Negativas , Humanos , Calcitriol/farmacologia , Vitamina K 2/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Células Tumorais Cultivadas , Receptores de Calcitriol/metabolismo , Vitamina K , Vitaminas/farmacologia
2.
Trends Mol Med ; 28(10): 864-881, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36028390

RESUMO

Phylloquinone (vitamin K1) and menaquinones (vitamin K2 family) are essential for post-translational γ-carboxylation of a small number of proteins, including clotting factors. These modified proteins have now been implicated in diverse physiological and pathological processes including cancer. Vitamin K intake has been inversely associated with cancer incidence and mortality in observational studies. Newly discovered functions of vitamin K in cancer cells include activation of the steroid and xenobiotic receptor (SXR) and regulation of oxidative stress, apoptosis, and autophagy. We provide an update of vitamin K biology, non-canonical mechanisms of vitamin K actions, the potential functions of vitamin K-dependent proteins in cancer, and observational trials on vitamin K intake and cancer.


Assuntos
Neoplasias , Vitamina K , Biologia , Humanos , Neoplasias/etiologia , Receptor de Pregnano X , Proteínas , Vitamina K/metabolismo , Vitamina K 1/metabolismo , Vitamina K 2/metabolismo
3.
JBMR Plus ; 5(12): e10582, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34950835

RESUMO

The presence of the vitamin D receptor (VDR) in mammary gland and breast cancer has long been recognized, and multiple preclinical studies have demonstrated that its ligand, 1,25-dihydroxyvitamin D (1,25D), modulates normal mammary gland development and inhibits growth of breast tumors in animal models. Vitamin D deficiency is common in breast cancer patients, and some evidence suggests that low vitamin D status enhances the risk for disease development or progression. Although many 1,25D-responsive targets in normal mammary cells and in breast cancers have been identified, validation of specific targets that regulate cell cycle, apoptosis, autophagy, and differentiation, particularly in vivo, has been challenging. Model systems of carcinogenesis have provided evidence that both VDR expression and 1,25D actions change with transformation, but clinical data regarding vitamin D responsiveness of established tumors is limited and inconclusive. Because breast cancer is heterogeneous, the relevant VDR targets and potential sensitivity to vitamin D repletion or supplementation will likely differ between patient populations. Detailed analysis of VDR actions in specific molecular subtypes of the disease will be necessary to clarify the conflicting data. Genomic, proteomic, and metabolomic analyses of in vitro and in vivo model systems are also warranted to comprehensively understand the network of vitamin D-regulated pathways in the context of breast cancer heterogeneity. This review provides an update on recent studies spanning the spectrum of mechanistic (cell/molecular), preclinical (animal models), and translational work on the role of vitamin D in breast cancer. © 2021 The Author. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

5.
Oncotarget ; 11(30): 2889-2905, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32774770

RESUMO

1,25-Dihydroxyvitamin D3 (1,25D3) induces growth arrest and apoptosis in breast cancer cells in vivo and in vitro, however the exact mechanisms are unclear. Although the vitamin D receptor (VDR), a ligand dependent transcription factor, is required for growth regulation by vitamin D, the specific target genes that trigger these effects are unknown. Genomic profiling of murine mammary tumor cells with differential VDR expression identified 35 transcripts that were altered by the 1,25D3-VDR complex including Hyaluronan Synthase-2 (Has2). Here we confirmed that 1,25D3 reduces both HAS2 gene expression and hyaluronic acid (HA) synthesis in multiple models of breast cancer. Furthermore, we show that the growth inhibitory effects of 1,25D3 are partially reversed in the presence of high molecular weight HA. HAS2 expression and HA production are elevated in immortalized human mammary epithelial cells induced to undergo epithelial-mesenchymal transition (EMT) through stable expression of TGFß, SNAIL or TWIST and in those expressing oncogenic H-RASV12, indicating that deregulation of HA production may be an early and frequent event in breast tumorigenesis. 1,25D3 also reduces HA secretion and acts additively with an HA synthesis inhibitor to slow growth of cells expressing TGFß, SNAIL and TWIST. Analysis of mammary gland and tumors from Vdr knockout mice suggest that loss of VDR is associated with enhanced HAS2 expression and HA production in vivo. These data define a novel role for 1,25D3 and the VDR in control of HA synthesis in epithelial tissues that likely contributes to its anti-cancer actions.

6.
Can J Physiol Pharmacol ; 98(8): 548-556, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32762631

RESUMO

The aim of this study was to determine new insights into the molecular mechanisms involved in the antiproliferative action of menadione + calcitriol (MEN+D) on MCF-7 cells. After 24 h, MEN+D inhibited the cell growth but was not observed with each single treatment. The combined drugs reduced the mitochondrial respiration at that time, as judged by an increase in the proton leak and a decrease in the ATP generation and coupling efficiency. At longer times, 48 or 96 h, either D or MEN reduced the proliferation, but the effect was higher when both drugs were used together. The combined treatment increased the superoxide anion ([Formula: see text]) and nitric oxide (NO•) contents as well as acidic vesicular organelles (AVOs) formation. The percentage of cells showing the lower mitochondrial membrane potential (ΔΨm) was highly increased by the combined therapy. LC3-II protein expression was enhanced by any treatment. In conclusion, the antiproliferative action of MEN+D involves oxidative/nitrosative stress, mitochondrial alteration, and autophagy. This combined therapy could be useful to treat breast cancer cells because it inhibits multiple oncogenic pathways more effectively than each single agent.


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias da Mama/patologia , Calcitriol/farmacologia , Mitocôndrias/efeitos dos fármacos , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Vitamina K 3/farmacologia , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia
7.
J Steroid Biochem Mol Biol ; 199: 105600, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31958633

RESUMO

The vitamin D receptor (VDR) and its ligand 1,25(OH)2D3 (1,25D) impact differentiation and exert anti-tumor effects in many tissues, but its role in salivary gland has yet to be defined. Using immunohistochemistry (IHC), we have detected strong VDR expression in murine and human salivary gland ducts. Compared to normal gland, VDR protein expression was retained in differentiated human pleomorphic adenoma (PA) but was undetectable in undifferentiated PA and in carcinomas, suggesting deregulation of VDR during salivary cancer progression. To gain insight into the potential role of VDR in salivary cancer, we assessed the effects of vitamin D in vivo and in vitro. Despite the presence of VDR in salivary gland, chronic dietary vitamin D restriction did not alter morphology of the salivary epithelium in C57/Bl6 mice. The localization of VDR in ductal epithelium prompted us to examine the effects of 1,25D in an established cell line (mSGc) derived from normal murine submandibular gland (SMG). This previously characterized cell line consists of multiple stem, progenitor and differentiated cell types as determined by mutually exclusive cellular expression of basal, ductal and myoepithelial markers. We demonstrated VDR expression and regulation of VDR target genes Vdr and Postn by 1,25D in mSGc, indicating functional ligand-mediated transcriptional activity. The effect of VDR signaling on epithelial differentiation markers was assessed by qPCR and IHC in mSGc cells treated with 1,25D. We found that 1,25D reduced mRNA expression of the basal cell progenitor marker keratin 5 (K5) and increased expression of the differentiated ductal cell marker keratin 7 (K7). Further, we found that 1,25D significantly decreased the number of proliferating cells, including proliferating K5+ cells. Characterization of cell cycle by Muse cytometry indicated 1,25D treatment decreased cells in S, G2, and M phase. The inhibition of K5+ cell proliferation by 1,25D is of particular interest because K5+ basal cells contribute to a wide variety of salivary tumor types. Our studies suggest that 1,25D alters cancer-relevant progenitor and differentiation markers in the salivary gland.


Assuntos
Receptores de Calcitriol/genética , Neoplasias das Glândulas Salivares/genética , Glândulas Salivares/metabolismo , Vitamina D/genética , Animais , Calcitriol/farmacologia , Diferenciação Celular/genética , Proliferação de Células/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento/genética , Homeostase/genética , Humanos , Camundongos , Neoplasias das Glândulas Salivares/metabolismo , Neoplasias das Glândulas Salivares/patologia , Glândulas Salivares/patologia , Transdução de Sinais/genética , Vitamina D/metabolismo
8.
Oncotarget ; 10(23): 2292-2305, 2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-31040920

RESUMO

Vitamin K serves as an essential co-factor in the γ-carboxylation of glutamate to γ-carboxyglutamate (GLA), a post-translational modification mediated by gamma-glutamyl carboxylase (GGCX) and vitamin K oxidoreductases (VKORC1 or VKORC1L1). While both phylloquinone (K1) and menaquinone (K2) support the synthesis of GLA-modified proteins, studies assessing K1 and/or K2 effects in cancer cells have reported minimal effects of K1 and anti-proliferative or pro-apoptotic effects of K2. qPCR results indicated highest expression of GGCX, VKORC1, and VKORC1L1 in triple negative breast cancer (TNBC) cell lines, Hs578T, MDA-MB-231 and SUM159PT, and in advanced stage disease. To assess differential effects of vitamin K, TNBC cells were cultured in media supplemented with K1 or K2. K1 treatment increased cell growth, and enhanced stemness and GLA-modified protein expression in TNBC lysates. Alternatively, lysates from cells exposed to vehicle, K2, or the VKOR antagonist, warfarin, did not express GLA-modified proteins. Further, K2 exposure reduced stemness and elicited anti-proliferative effects. These studies show that TNBC cells express a functional vitamin K pathway and that K1 and K2 exert distinct phenotypic effects. Clarification of the mechanisms by which K1 and K2 induce these effects may lead to relevant therapeutic strategies for manipulating this pathway in TNBC patients.

10.
J Steroid Biochem Mol Biol ; 189: 248-258, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30664926

RESUMO

Vitamin D3 and its receptor are responsible for controlling energy expenditure in adipocytes and have direct roles in the transcriptional regulation of energy metabolic pathways. This phenomenon also has a significant impact on the etiology of prostate cancer (PCa). Using several in vitro models, the roles of vitamin D3 on energy metabolism and its implication in primary, early, and late invasive PCa were investigated. BODIPY staining and qPCR analyses show that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) up-regulates de novo lipogenesis in PCa cells by orchestrating transcriptional regulation that affects cholesterol and lipid metabolic pathways. This lipogenic effect is highly dependent on the interaction of several nuclear receptors and their corresponding ligands, including androgen receptor (AR), vitamin D receptor (VDR), and retinoid X receptor (RXR). In contrast, inhibition of peroxisome proliferator-activated receptor alpha (PPARα) signaling blocks the induction of the lipogenic phenotype induced by these receptors. Furthermore, 1,25(OH)2D3, T, and 9 cis-retinoic acid (9-cis RA) together redirect cytosolic citrate metabolism toward fatty acid synthesis by restoring normal prostatic zinc homeostasis that functions to truncate TCA cycle metabolism. 1,25(OH)2D3, T, and 9-cis RA also exert additional control of TCA cycle metabolism by down-regulating SLC25A19, which limits the availability of the co-factor thiamine pyrophosphate (TPP) that is required for enzymatic catalyzation of citrate oxidation. This extensive metabolic reprogramming mediated by 1,25(OH)2D3, T, and 9-cis RA is preserved in all in vitro cell lines investigated. These data suggest that 1,25(OH)2D3 and T are important regulators of normal prostatic energy metabolism. Based on the close association between energy metabolism and cancer progression, supplementation of vitamin D3 and testosterone can restrict the energy production that is required to drive PCa progression by maintaining proper zinc homeostasis and inhibiting TCA cycle activity in PCa cells.


Assuntos
Calcitriol/metabolismo , Metabolismo Energético , Neoplasias da Próstata/metabolismo , Testosterona/metabolismo , Zinco/metabolismo , Linhagem Celular Tumoral , Humanos , Masculino , Receptores de Calcitriol/metabolismo
12.
J Steroid Biochem Mol Biol ; 177: 15-20, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28746837

RESUMO

The presence of the vitamin D receptor in mammary gland and breast cancer has been recognized since the early 1980s, and multiple pre-clinical studies have demonstrated that its ligand 1,25D modulates normal mammary gland development and sensitivity to carcinogenesis. Although studies have characterized many 1,25D responsive targets in normal mammary cells and in breast cancers, validation of relevant targets that regulate cell cycle, apoptosis, autophagy and differentiation, particularly in vivo, has been challenging. Vitamin D deficiency is common in breast cancer patients and some evidence suggests that low vitamin D status enhances the risk for disease development or progression. Model systems of carcinogenesis have provided evidence that both VDR expression and 1,25D actions change with transformation but clinical data regarding vitamin D responsiveness of established tumors is limited and inconclusive. Because breast cancer is heterogeneous, analysis of VDR actions in specific molecular subtypes of the disease is necessary to clarify the conflicting data. Genomic, proteomic and metabolomic analyses of in vitro and in vivo model systems is also warranted to comprehensively understand the network of vitamin D regulated pathways in the context of breast cancer heterogeneity.


Assuntos
Neoplasias da Mama/metabolismo , Vitamina D/metabolismo , Vitaminas/metabolismo , Animais , Feminino , Humanos , Pesquisa Translacional Biomédica
13.
Endocrinology ; 158(12): 4174-4188, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029014

RESUMO

Genomic profiling has identified a subset of metabolic genes that are altered by 1,25-dihydroxyvitamin D (1,25D) in breast cells, including GLUL, the gene that encodes glutamine synthetase (GS). In this study, we explored the relevance of vitamin D modulation of GLUL and other metabolic genes in the context of glutamine utilization and dependence. We show that exposure of breast epithelial cells to glutamine deprivation or a GS inhibitor reduced growth and these effects were exacerbated by cotreatment with 1,25D. 1,25D downregulation of GLUL was sufficient to reduce abundance and activity of GS. Flow cytometry demonstrated that glutamine deprivation induced S phase arrest, likely due to reduced availability of glutamine for DNA synthesis. In contrast, 1,25D induced G0/G1 arrest, indicating that its effects are not solely due to reduced glutamine synthesis. Indeed, 1,25D also reduced expression of GLS1 and GLS2 genes, which code for glutaminases that shunt glutamine into the tricarboxylic acid (TCA) cycle. Consistent with reduced entry of glutamine into the TCA cycle, 1,25D inhibited glutamine oxidation and the metabolic response to exogenous glutamine as analyzed by Seahorse Bioscience extracellular flux assays. Effects of 1,25D on GLUL/GS expression and glutamine oxidation were retained in human mammary epithelial (HME) cells that express SV-40 (HME-LT cells) but not in those that express SV-40 and oncogenic H-Ras (HME-PR cells). Furthermore, HME-PR cells exhibited glutamine independence and expressed constitutively high levels of GLUL/GS, which were unaffected by 1,25D. Collectively, these data suggest that 1,25D alters glutamine availability, dependence, and metabolism in nontransformed and preneoplastic mammary epithelial cells in association with cell cycle arrest.


Assuntos
Células Epiteliais/efeitos dos fármacos , Glutamato-Amônia Ligase/metabolismo , Glutamina/metabolismo , Vitamina D/análogos & derivados , Western Blotting , Mama/citologia , Mama/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Epiteliais/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glutamato-Amônia Ligase/genética , Glutamina/farmacologia , Humanos , Oxirredução/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vitamina D/farmacologia , Vitaminas/farmacologia
15.
Mol Cell Endocrinol ; 453: 88-95, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28579119

RESUMO

The nuclear receptor for 1α,25-dihydroxycholecalciferol (1,25D), the active form of vitamin D, has anti-tumor actions in many tissues. The vitamin D receptor (VDR) is expressed in normal mammary gland and in many human breast cancers suggesting it may represent an important tumor suppressor gene in this tissue. When activated by 1,25D, VDR modulates multiple cellular pathways including those related to energy metabolism, terminal differentiation and inflammation. There is compelling pre-clinical evidence that alterations in vitamin D status affect breast cancer development and progression, while clinical and epidemiological data are suggestive but not entirely consistent. The demonstration that breast cells express CYP27B1 (which converts the precursor vitamin D metabolite 25D to the active metabolite 1,25D) and CYP24A1 (which degrades both 25D and 1,25D) provides insight into the difficulties inherent in using dietary vitamin D, sun exposure and/or serum biomarkers of vitamin D status to predict disease outcomes. Emerging evidence suggests that the normally tight balance between CYP27B1 and CYP24A1 becomes deregulated during cancer development, leading to abrogation of the tumor suppressive effects triggered by VDR. Research aimed at understanding the mechanisms that govern uptake, storage, metabolism and actions of vitamin D steroids in normal and neoplastic breast tissue remain an urgent priority.


Assuntos
Neoplasias da Mama/metabolismo , Glândulas Mamárias Humanas/metabolismo , Receptores de Calcitriol/metabolismo , Vitamina D/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Camundongos , Receptores de Calcitriol/genética , Vitamina D/genética , Vitamina D3 24-Hidroxilase/genética , Vitamina D3 24-Hidroxilase/metabolismo
16.
J Steroid Biochem Mol Biol ; 171: 133-143, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28285017

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are products of incomplete combustion of organic compounds, abundant in exhaust fumes and cigarette smoke. They act by binding to the aryl hydrocarbon receptor (AHR) which induces expression of phase 1 and phase 2 enzymes in the liver. PAH induced AHR activation may also lead to adverse effects by modulating other pathways, for example estrogen receptor (ER) signaling in the female reproductive tract. We have investigated the effects of the PAH 3-methylcholanthrene (3-MC) on 17ß-estradiol (E2) dependent signaling in the uterus of ovariectomized rats to characterize the cross talk between AHR and ER on an mRNA transcriptome wide scale. A standard three day uterotrophic assay was performed in young adult Lewis rats. Treatment induced effects were analyzed using histology, immunohistochemistry and gene expression analysis by microarray and qPCR. 3-MC shows broad E2 antagonistic effects on uterine mRNA transcription of the vast majority of E2 regulated genes, significantly altering prostaglandin biosynthesis, complement activation, coagulation pathways and other inflammatory response pathways. The regulation of ER expression in the uterus, but not the regulation of E2 metabolism in the liver, was identified as a potentially important factor in mediating this general antiestrogenic effect. The regulation of prostaglandin biosynthesis by E2 is important for inflammation-like events during pregnancy including the initiation of birth. Our results suggest that adverse effects of PAHs on prostaglandin related pathways are likely caused by the interference with E2 signaling, specifically by inhibiting the E2 mediated downregulation of PGF2α. Characterization of the generalized antagonistic effect of 3-MC on E2 dependent signaling in the rat uterus thus contributes to a better understanding of molecular mechanisms of the toxicity of PAHs in female reproductive organs.


Assuntos
Carcinógenos Ambientais/toxicidade , Estradiol/metabolismo , Moduladores de Receptor Estrogênico/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Metilcolantreno/toxicidade , Receptores de Hidrocarboneto Arílico/agonistas , Útero/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Estradiol/química , Antagonistas de Estrogênios/toxicidade , Feminino , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/metabolismo , Especificidade de Órgãos , Ovariectomia , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos Endogâmicos Lew , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/química , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Útero/citologia , Útero/imunologia , Útero/metabolismo
18.
Exp Cell Res ; 349(1): 15-22, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27693451

RESUMO

The vitamin D receptor (VDR), and its ligand 1α,25-dihydroxyvitamin D3 (1,25D3) prevent breast cancer development and progression, yet the molecular mechanisms governing this are unclear. MicroRNAs (miRNAs) on the other hand, promote or inhibit breast cancer growth. To understand how VDR regulates miRNAs, we compared miRNA expression of wild-type (WT) and VDR knockout (VDRKO) breast cancer cells by a Mouse Breast Cancer miRNA PCR array. Compared to VDR WT cells, expressions of miR-214, miR-199a-3p and miR-199a-5p of the miR-199a/miR-214 cluster were 42, 15, and 10 fold higher in VDRKO cells respectively. Overexpression of VDR in breast cancer cells reduced the miR-199a/miR-214 cluster expression by 30%. VDR status also negatively correlated with Dnm3os expression, a non-coding RNA transcript of the dynamin-3 gene encoding the miR-199a/miR-214 cluster, suggesting that VDR represses this cluster through Dnm3os. Conversely, overexpression of miR-214 in MCF-7 and T47D cells antagonized VDR mediated signaling. Furthermore, there was a positive correlation between VDR status and the expression of Suppressor of fused gene (SuFu), a hedgehog pathway inhibitor. miR-214 on the other hand suppressed SuFu protein expression. These findings suggest a crosstalk between VDR and miR-214 in regulating hedgehog signaling in breast cancer cells, providing new therapies for breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas Hedgehog/metabolismo , MicroRNAs/metabolismo , Receptores de Calcitriol/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Animais , Neoplasias da Mama/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Camundongos , Transdução de Sinais/efeitos dos fármacos , Vitamina D/análogos & derivados , Vitamina D/farmacologia
19.
Mol Cell Endocrinol ; 424: 34-41, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26774511

RESUMO

Genomic profiling of immortalized human mammary epithelial (hTERT-HME1) cells identified several metabolic genes, including the membrane glutamate transporter, SLC1A1, as 1,25-dihydroxyvitamin D3 (1,25D) regulated. In these studies we have surveyed the effects of 1,25D on known glutamate transporters and evaluated its impact on cellular glutamate handling. We confirm that expression of SLC1A1 and all of its known transcript variants are significantly upregulated in hTERT-HME1 cells following 1,25D treatment. Expression of the full-length cognate protein, EAAT3, is correspondingly increased in 1,25D treated hTERT-HME1 cells. Under the same conditions, the expression of two other glutamate transporters--SLC1A6 (EAAT4) and SLC1A2 (EAAT2 or GLT-1)--is enhanced by 1,25D while that of SLC1A3 (EAAT1 or GLAST) and SLC7A11 (xCT) is decreased. Glutamate is not essential for growth of hTERT-HME1 cells, and supplemental glutamate (up to 0.5 mM) does not abrogate the growth inhibitory effects of 1,25D. These data suggest that extracellular glutamate is not a major contributor to cellular energy metabolism in hTERT-HME1 cells under basal conditions and that the growth inhibitory effects of 1,25D are not secondary to its effects on glutamate handling. Instead, the effects of 1,25D on glutamate transporters translated to a decrease in cellular glutamate concentration and an increase in media glutamate concentration, suggesting that one or more of these transporters functions to export glutamate in response to 1,25D exposure. The reduced cellular glutamate concentration may also reflect its incorporation into the cellular glutathione (GSH) pool, which is increased upon 1,25D treatment. In support of this concept, the expression of GCLC (which codes for the rate-limiting enzyme in GSH synthesis) and genes which generate reducing equivalents in the form of NADPH (ie, G6PD, PGD, IDH2) are elevated in 1,25D-treated cells. Taken together, these data identify 1,25D as a physiological regulator of multiple membrane glutamate transporters that impacts on overall cellular glutamate handling.


Assuntos
Células Epiteliais/efeitos dos fármacos , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/farmacologia , Glândulas Mamárias Humanas/citologia , Vitamina D/análogos & derivados , Sistema y+ de Transporte de Aminoácidos/genética , Linhagem Celular , Meios de Cultura/farmacologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Transportador 1 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório , Transportador 4 de Aminoácido Excitatório/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Humanos , Glândulas Mamárias Humanas/efeitos dos fármacos , Glândulas Mamárias Humanas/metabolismo , Isoformas de Proteínas/metabolismo , Vitamina D/farmacologia
20.
J Steroid Biochem Mol Biol ; 164: 299-308, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26429395

RESUMO

Vitamin D status has been associated with obesity, metabolic syndrome and several cancers including colon and breast. Since adipocytes express VDR and obesity is a known risk factor for cancer, vitamin D actions in adipose tissue may contribute to its cancer protective effects. In the mammary gland, signaling from adipocytes to epithelial cells is necessary for breast cancer initiation, but the impact of vitamin D on this cross-talk is unclear. To examine the role of VDR in adipose tissue, particularly in the context of the mammary gland, we crossed Vdr-flox mice with Fabp4-cre mice to generate mice with adipose-specific Vdr deletion (termed CVF mice). CVF mice and Fabp4-cre control mice (termed CN1 mice) were reared on high calcium "rescue" diets (for comparison to global VDRKO mice) or on high fat diets (to stimulate adiposity). Vdr expression was significantly reduced in adipose tissue of CVF mice compared to CN1 mice. In contrast to global VDRKO mice (which exhibit adipose atrophy), female CVF mice exhibited higher growth rates and increased visceral fat pad weight compared to control mice. Expression of Ucp1 and Pparg were elevated in white adipose tissue of CVF mice supporting these genes as Vdr targets in mature adipocytes. Adipose-specific Vdr deletion did not impair glucose tolerance or alter the weight of brown adipose tissue, liver, pancreas or bone in response to high fat feeding. In contrast to the effect of adipose-specific Vdr deletion on visceral fat pads, the weight of the subcutaneous (mammary) fat pad was not increased in high fat fed CVF female mice compared to control mice. Quantitative analysis of mammary ductal development on whole mounts and H&E stained sections indicated that adipose-deletion of Vdr significantly enhanced mammary epithelial density and branching. Collectively, these data support the hypothesis that Vdr in mature adipocytes alters the metabolic response to high fat diets and exerts anti-proliferative effects on the mammary epithelium.


Assuntos
Adipócitos Brancos/metabolismo , Células Epiteliais/metabolismo , Gordura Intra-Abdominal/metabolismo , Glândulas Mamárias Animais/metabolismo , Obesidade/metabolismo , Receptores de Calcitriol/genética , Adipócitos Brancos/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Dieta Hiperlipídica , Células Epiteliais/citologia , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Regulação da Expressão Gênica , Teste de Tolerância a Glucose , Integrases/genética , Integrases/metabolismo , Gordura Intra-Abdominal/patologia , Glândulas Mamárias Animais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia , Obesidade/genética , Obesidade/patologia , PPAR gama/genética , PPAR gama/metabolismo , Receptores de Calcitriol/deficiência , Transdução de Sinais , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Vitamina D/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...