Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 169(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37494115

RESUMO

Myxobacteria are social microbial predators that use cell-cell contacts to identify bacterial or fungal prey and to differentiate kin relatives to initiate cellular responses. For prey killing, they assemble Tad-like and type III-like secretion systems at contact sites. For kin discrimination (KD), they assemble outer membrane exchange complexes composed of the TraA and TraB receptors at contacts sites. A type VI secretion system and Rhs proteins also mediate KD. Following cellular recognition, these systems deliver appropriate effectors into target cells. For prey, this leads to cell death and lysis for nutrient consumption by myxobacteria. In KD, a panel of effectors are delivered, and if adjacent cells are clonal cells, resistance ensues because they express a cognate panel of immunity factors; while nonkin lack complete immunity and are intoxicated. This review compares and contrasts recent findings from these systems in myxobacteria.


Assuntos
Myxococcales , Myxococcus xanthus , Animais , Myxococcales/genética , Comportamento Predatório , Myxococcus xanthus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Genes (Basel) ; 14(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36980919

RESUMO

Social diversification in microbes is an evolutionary process where lineages bifurcate into distinct populations that cooperate with themselves but not with other groups. In bacteria, this is frequently driven by horizontal transfer of mobile genetic elements (MGEs). Here, the resulting acquisition of new genes changes the recipient's social traits and consequently how they interact with kin. These changes include discriminating behaviors mediated by newly acquired effectors. Since the producing cell is protected by cognate immunity factors, these selfish elements benefit from selective discrimination against recent ancestors, thus facilitating their proliferation and benefiting the host. Whether social diversification benefits the population at large is less obvious. The widespread use of next-generation sequencing has recently provided new insights into population dynamics in natural habitats and the roles MGEs play. MGEs belong to accessory genomes, which often constitute the majority of the pangenome of a taxon, and contain most of the kin-discriminating loci that fuel rapid social diversification. We further discuss mechanisms of diversification and its consequences to populations and conclude with a case study involving myxobacteria.


Assuntos
Bactérias , Myxococcales , Bactérias/genética , Myxococcales/genética , Evolução Biológica , Genoma , Sequências Repetitivas Dispersas/genética
3.
mBio ; 12(5): e0238821, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34517761

RESUMO

Bacteria compete against related individuals by delivering toxins. In myxobacteria, a key delivery and kin discrimination mechanism is called outer membrane (OM) exchange (OME). Here, cells that display compatible polymorphic cell surface receptors recognize one another and bidirectionally transfer OM content. Included in the cargo is a suite of polymorphic SitA lipoprotein toxins. Consequently, OME between compatible cells that are not clonemates results in intoxication, while exchange between clonemates is harmonious because cells express a cognate repertoire of immunity proteins, which themselves are not transferred. SitA toxins belong to six nonhomologous families classified by sequence conservation within their N-terminal "escort domains" (EDs), while their C termini contain polymorphic nucleases that target the cytoplasmic compartment. To investigate how toxins delivered to the OM by OME translocate to the cytoplasm, we selected transposon mutants resistant to each family. Our screens identified eight genes that conferred resistance in a SitA family-specific manner. Most of these genes are predicted to localize to the cell envelope, and some resemble proteins that colicins exploit to gain cell entry. By constructing functional chimeric SitAs between families, we show that the ED determines the specificity of resistance. Importantly, a mutant that confers resistance to all six SitA families was discovered. This gene was named traC and plays an accessory role with traAB in OME. This work thus provides insight into the mechanism of kin discrimination in myxobacteria and provides working models for how SitA toxins exploit host proteins to gain cytoplasmic entry. IMPORTANCE Many bacterial species use diverse systems to deliver bacteriocins or toxins to neighboring competing cells. These systems are often selective in targeting cells that are related to themselves and therefore compete in the same niches for resources. How these systems specifically identify target cells and deliver toxins to particular cellular compartments is a fundamental question. This study uses the model social bacterium Myxococcus xanthus to unravel how its kin discrimination system, called outer membrane exchange, works. Along with the TraA polymorphic cell surface receptor that identifies related individuals with compatible receptors, this work discovered a new protein, called TraC, that functions in this discrimination system. Additionally, genetic screens identified host factors that are proposed to be involved in the cytoplasmic entry of lipoprotein toxins from the OM. This work complements and broadens our mechanistic understanding of how bacteria use transport systems to discriminate against related foes to build clonal populations.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Externa Bacteriana/metabolismo , Lipoproteínas/metabolismo , Myxococcus xanthus/metabolismo , Toxinas Biológicas/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lipoproteínas/genética , Myxococcus xanthus/genética , Toxinas Biológicas/genética
4.
ISME J ; 14(10): 2474-2487, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32565537

RESUMO

Many species form distinct social groups that provide fitness advantages to individuals. However, the evolutionary processes that generate new social groups are not well understood. Here we examined recently diverged natural isolates of the model social bacterium, Myxococcus xanthus, to probe the genetic mechanisms and evolutionary processes of kin discrimination that occurred naturally in soil. We show that social incompatibilities were formed from horizontal gene transfer of effectors belonging to three distinct polymorphic toxin systems; outer membrane exchange, type VI secretion and rearrangement hotspot systems. Strikingly, the unique toxin effectors and their respective immunity genes that are responsible for social incompatibilities reside on mobile genetic elements, which make up nearly all of the genotypic variation between isolates within clades. By disrupting these three toxin systems, we engineered social harmony between strains that were originally incompatible. In addition, a horizontal allele swap of a single kin recognition receptor changed social interactions and competition outcomes. Our results provide a case study for how horizontal gene transfer led to social diversification in a natural context. Finally, we show how genomic information of kin discriminatory loci can be used to predict social interactions.


Assuntos
Myxococcus xanthus , Alelos , Evolução Biológica , Genômica , Humanos , Sequências Repetitivas Dispersas , Myxococcus xanthus/genética
5.
Microb Ecol ; 65(3): 537-40, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23529651

RESUMO

A fundamental issue in ecology is whether communities are random assemblages or, alternatively, whether there are rules that determine which combinations of taxa can co-occur. For microbial systems, in particular, the question of whether taxonomic groups exhibit differences in community organization remains unresolved but is critical for our understanding of community structure and function. Here, we used presence-absence matrices derived from bar-coded pyrosequencing data to evaluate the assembly patterns of eight bacterial divisions distributed along two Yellowstone National Park hot spring outflow channels. Four divisions (Cyanobacteria, Chloroflexi, Acidobacteria, and Cytophaga-Flavobacterium-Bacteroides) exhibited less co-occurrence than expected by chance, with phototrophic taxa showing the strongest evidence for nonrandom community structure. We propose that both differences in environmental tolerance and competitive interactions within divisions contribute to these nonrandom assembly patterns. The higher degree of nonrandom structure observed for phototrophic taxa compared with the other divisions may be due in part to greater overlap in resource usage, as has been previously proposed for plant communities.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Ecossistema , Fontes Termais/microbiologia , Bactérias/genética , DNA Bacteriano/genética , Fontes Termais/análise , Estados Unidos
6.
Appl Environ Microbiol ; 79(4): 1353-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23263946

RESUMO

Environmental gradients are expected to promote the diversification and coexistence of ecological specialists adapted to local conditions. Consistent with this view, genera of phototrophic microorganisms in alkaline geothermal systems generally appear to consist of anciently divergent populations which have specialized on different temperature habitats. At White Creek (Lower Geyser Basin, Yellowstone National Park), however, a novel, 16S rRNA-defined lineage of the filamentous anoxygenic phototroph Chloroflexus (OTU 10, phylum Chloroflexi) occupies a much wider thermal niche than other 16S rRNA-defined groups of phototrophic bacteria. This suggests that Chloroflexus OTU 10 is either an ecological generalist or, alternatively, a group of cryptic thermal specialists which have recently diverged. To distinguish between these alternatives, we first isolated laboratory strains of Chloroflexus OTU 10 from along the White Creek temperature gradient. These strains are identical for partial gene sequences encoding the 16S rRNA and malonyl coenzyme A (CoA) reductase. However, strains isolated from upstream and downstream samples could be distinguished based on sequence variation at pcs, which encodes the propionyl-CoA synthase of the 3-hydroxypropionate pathway of carbon fixation used by the genus Chloroflexus. We next demonstrated that strains have diverged in temperature range for growth. Specifically, we obtained evidence for a positive correlation between thermal niche breadth and temperature optimum, with strains isolated from lower temperatures exhibiting greater thermal specialization than the most thermotolerant strain. The study has implications for our understanding of both the process of niche diversification of microorganisms and how diversity is organized in these hot spring communities.


Assuntos
Chloroflexus/classificação , Chloroflexus/isolamento & purificação , Variação Genética , Fontes Termais/microbiologia , Chloroflexus/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Oxirredutases/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...