Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710072

RESUMO

The functional properties of complex oxides, including magnetism and ferroelectricity, are closely linked to subtle structural distortions. Ultrafast optical excitations provide the means to manipulate structural features and ultimately to affect the functional properties of complex oxides with picosecond-scale precision. We report that the lattice expansion of multiferroic BiFeO3 following above-bandgap optical excitation leads to distortion of the oxygen octahedral rotation (OOR) pattern. The continuous coupling between OOR and strain was probed using time-resolved X-ray free-electron laser diffraction with femtosecond time resolution. Density functional theory calculations predict a relationship between the OOR and the elastic strain consistent with the experiment, demonstrating a route to employing this approach in a wider range of systems. Ultrafast control of the functional properties of BiFeO3 thin films is enabled by this approach because the OOR phenomena are related to ferroelectricity, and via the Fe-O-Fe bond angles, the superexchange interaction between Fe atoms.

2.
Adv Mater ; : e2312673, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441355

RESUMO

The drive toward non-von Neumann device architectures has led to an intense focus on insulator-to-metal (IMT) and the converse metal-to-insulator (MIT) transitions. Studies of electric field-driven IMT in the prototypical VO2 thin-film channel devices are largely focused on the electrical and elastic responses of the films, but the response of the corresponding TiO2 substrate is often overlooked, since it is nominally expected to be electrically passive and elastically rigid. Here, in-operando spatiotemporal imaging of the coupled elastodynamics using X-ray diffraction microscopy of a VO2 film channel device on TiO2 substrate reveals two new surprises. First, the film channel bulges during the IMT, the opposite of the expected shrinking in the film undergoing IMT. Second, a microns thick proximal layer in the substrate also coherently bulges accompanying the IMT in the film, which is completely unexpected. Phase-field simulations of coupled IMT, oxygen vacancy electronic dynamics, and electronic carrier diffusion incorporating thermal and strain effects suggest that the observed elastodynamics can be explained by the known naturally occurring oxygen vacancies that rapidly ionize (and deionize) in concert with the IMT (MIT). Fast electrical-triggering of the IMT via ionizing defects and an active "IMT-like" substrate layer are critical aspects to consider in device applications.

3.
ACS Nano ; 18(3): 2105-2116, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38198599

RESUMO

Solid-state devices made from correlated oxides, such as perovskite nickelates, are promising for neuromorphic computing by mimicking biological synaptic function. However, comprehending dopant action at the nanoscale poses a formidable challenge to understanding the elementary mechanisms involved. Here, we perform operando infrared nanoimaging of hydrogen-doped correlated perovskite, neodymium nickel oxide (H-NdNiO3, H-NNO), devices and reveal how an applied field perturbs dopant distribution at the nanoscale. This perturbation leads to stripe phases of varying conductivity perpendicular to the applied field, which define the macroscale electrical characteristics of the devices. Hyperspectral nano-FTIR imaging in conjunction with density functional theory calculations unveils a real-space map of multiple vibrational states of H-NNO associated with OH stretching modes and their dependence on the dopant concentration. Moreover, the localization of excess charges induces an out-of-plane lattice expansion in NNO which was confirmed by in situ X-ray diffraction and creates a strain that acts as a barrier against further diffusion. Our results and the techniques presented here hold great potential for the rapidly growing field of memristors and neuromorphic devices wherein nanoscale ion motion is fundamentally responsible for function.

4.
Nano Lett ; 23(22): 10213-10220, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37910440

RESUMO

Strong spin-lattice coupling in van der Waals (vdW) magnets shows potential for innovative magneto-mechanical applications. Here, nanoscale and picosecond imaging by ultrafast electron microscopy reveal heterogeneous spin-mediated coherent acoustic phonon dynamics in a thin-film cavity of the vdW antiferromagnet FePS3. The harmonics of the interlayer shear acoustic modes are observed, in which the even and odd harmonics exhibit distinct nanoscopic dynamics. Corroborated by acoustic wave simulation, the role of defects in forming even harmonics is elucidated. Above the Néel temperature (TN), the interlayer shear acoustic harmonics are suppressed, while the in-plane traveling wave is predominantly excited. The dominant acoustic dynamics shifts from the out-of-plane shear to the in-plane traveling wave across TN, demonstrating that magnetic properties can influence phonon scattering pathways. The spatiotemporally resolved structural characterization provides valuable nanoscopic insights for interlayer-shear-mode-based acoustic cavities, opening up possibilities for magneto-mechanical applications of vdW magnets.

5.
ACS Nano ; 17(19): 18843-18849, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37726260

RESUMO

Dynamical control of thermal transport at the nanoscale provides a time-domain strategy for optimizing thermal management in nanoelectronics, magnetic devices, and thermoelectric devices. However, the rate of change available for thermal switches and regulators is limited to millisecond time scales, calling for a faster modulation speed. Here, time-resolved X-ray diffraction measurements and thermal transport modeling reveal an ultrafast modulation of the interfacial thermal conductance of an FeRh/MgO heterostructure as a result of a structural phase transition driven by optical excitation. Within 90 ps after optical excitation, the interfacial thermal conductance is reduced by a factor of 5 and lasts for a few nanoseconds, in comparison to the value at the equilibrium FeRh/MgO interface. The experimental results combined with thermal transport calculations suggest that the reduced interfacial thermal conductance results from enhanced phonon scattering at the interface where the lattice experiences transient in-plane biaxial stress due to the structural phase transition of FeRh. Our results suggest that optically driven phase transitions can be utilized for ultrafast nanoscale thermal switches for device application.

6.
Adv Mater ; 35(44): e2306029, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37611614

RESUMO

Domain switching is crucial for achieving desired functions in ferroic materials that are used in various applications. Fast control of domains at sub-nanosecond timescales remains a challenge despite its potential for high-speed operation in random-access memories, photonic, and nanoelectronic devices. Here, ultrafast laser excitation is shown to transiently melt and reconfigure ferroelectric stripe domains in multiferroic bismuth ferrite on a timescale faster than 100 picoseconds. This dynamic behavior is visualized by picosecond- and nanometer-resolved X-ray diffraction and time-resolved X-ray diffuse scattering. The disordering of stripe domains is attributed to the screening of depolarization fields by photogenerated carriers resulting in the formation of charged domain walls, as supported by phase-field simulations. Furthermore, the recovery of disordered domains exhibits subdiffusive growth on nanosecond timescales, with a non-equilibrium domain velocity reaching up to 10 m s-1 . These findings present a new approach to image and manipulate ferroelectric domains on sub-nanosecond timescales, which can be further extended into other complex photoferroic systems to modulate their electronic, optical, and magnetic properties beyond gigahertz frequencies. This approach could pave the way for high-speed ferroelectric data storage and computing, and, more broadly, defines new approaches for visualizing the non-equilibrium dynamics of heterogeneous and disordered materials.

7.
Nature ; 620(7976): 988-993, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532936

RESUMO

Understanding how microscopic spin configuration gives rise to exotic properties at the macroscopic length scale has long been pursued in magnetic materials1-5. One seminal example is the Einstein-de Haas effect in ferromagnets1,6,7, in which angular momentum of spins can be converted into mechanical rotation of an entire object. However, for antiferromagnets without net magnetic moment, how spin ordering couples to macroscopic movement remains elusive. Here we observed a seesaw-like rotation of reciprocal lattice peaks of an antiferromagnetic nanolayer film, whose gigahertz structural resonance exhibits more than an order-of-magnitude amplification after cooling below the Néel temperature. Using a suite of ultrafast diffraction and microscopy techniques, we directly visualize this spin-driven rotation in reciprocal space at the nanoscale. This motion corresponds to interlayer shear in real space, in which individual micro-patches of the film behave as coherent oscillators that are phase-locked and shear along the same in-plane axis. Using time-resolved optical polarimetry, we further show that the enhanced mechanical response strongly correlates with ultrafast demagnetization, which releases elastic energy stored in local strain gradients to drive the oscillators. Our work not only offers the first microscopic view of spin-mediated mechanical motion of an antiferromagnet but it also identifies a new route towards realizing high-frequency resonators8,9 up to the millimetre band, so the capability of controlling magnetic states on the ultrafast timescale10-13 can be readily transferred to engineering the mechanical properties of nanodevices.

8.
Nat Commun ; 13(1): 6598, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329063

RESUMO

The interplay between a multitude of electronic, spin, and lattice degrees of freedom underlies the complex phase diagrams of quantum materials. Layer stacking in van der Waals (vdW) heterostructures is responsible for exotic electronic and magnetic properties, which inspires stacking control of two-dimensional magnetism. Beyond the interplay between stacking order and interlayer magnetism, we discover a spin-shear coupling mechanism in which a subtle shear of the atomic layers can have a profound effect on the intralayer magnetic order in a family of vdW antiferromagnets. Using time-resolved X-ray diffraction and optical linear dichroism measurements, interlayer shear is identified as the primary structural degree of freedom that couples with magnetic order. The recovery times of both shear and magnetic order upon optical excitation diverge at the magnetic ordering temperature with the same critical exponent. The time-dependent Ginzburg-Landau theory shows that this concurrent critical slowing down arises from a linear coupling of the interlayer shear to the magnetic order, which is dictated by the broken mirror symmetry intrinsic to the monoclinic stacking. Our results highlight the importance of interlayer shear in ultrafast control of magnetic order via spin-mechanical coupling.

9.
Sci Rep ; 12(1): 16606, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36198711

RESUMO

Scattering of energetic charge carriers and their coupling to lattice vibrations (phonons) in dielectric materials and semiconductors are crucial processes that determine the functional limits of optoelectronics, photovoltaics, and photocatalysts. The strength of these energy exchanges is often described by the electron-phonon coupling coefficient, which is difficult to measure due to the microscopic time- and length-scales involved. In the present study, we propose an alternate means to quantify the coupling parameter along with thermal boundary resistance and electron conductivity by performing a high angular-resolution time-resolved X-ray diffraction measurement of propagating lattice deformation following laser excitation of a nanoscale, polycrystalline metal film on a semiconductor substrate. Our data present direct experimental evidence for identifying the ballistic and diffusive transport components occurring at the interface, where only the latter participates in thermal diffusion. This approach provides a robust measurement that can be applied to investigate microscopic energy transport in various solid-state materials.

10.
Nano Lett ; 22(11): 4294-4300, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35612522

RESUMO

Optical excitation leads to ultrafast stress generation in the prototypical multiferroic BiFeO3. The time scales of stress generation are set by the dynamics of the population of excited electronic states and the coupling of the electronic configuration to the structure. X-ray free-electron laser diffraction reveals high-wavevector subpicosecond-time scale stress generation following ultraviolet excitation of a BiFeO3 thin film. Stress generation includes a fast component with a 1/e rise time with an upper limit of 300 fs and longer-rise time components extending to 1.5 ps. The contributions of the fast and delayed components vary as a function of optical fluence, with a reduced a fast-component contribution at high fluence. The results provide insight into stress-generation mechanisms linked to the population of excited electrons and point to new directions in the application of nanoscale multiferroics and related ferroic complex oxides. The fast component of the stress indicates that structural parameters and properties of ferroelectric thin film materials can be optically modulated with 3 dB bandwidths of at least 0.5 THz.

11.
Proc Natl Acad Sci U S A ; 119(19): e2118597119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35522708

RESUMO

SignificancePhase transitions, the changes between states of matter with distinct electronic, magnetic, or structural properties, are at the center of condensed matter physics and underlie valuable technologies. First-order phase transitions are intrinsically heterogeneous. When driven by ultrashort excitation, nanoscale phase regions evolve rapidly, which has posed a significant experimental challenge to characterize. The newly developed laser-pumped X-ray nanodiffraction imaging technique reported here has simultaneous 100-ps temporal and 25-nm spatial resolutions. This approach reveals pathways of the nanoscale structural rearrangement upon ultrafast optical excitation, different from those transitions under slowly varying parameters. The spatiotemporally resolved structural characterization provides crucial nanoscopic insights into ultrafast phase transitions and opens opportunities for controlling nanoscale phases on ultrafast time scales.

12.
Phys Rev Lett ; 128(3): 036401, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35119886

RESUMO

Hysteresis underlies a large number of phase transitions in solids, giving rise to exotic metastable states that are otherwise inaccessible. Here, we report an unconventional hysteretic transition in a quasi-2D material, EuTe_{4}. By combining transport, photoemission, diffraction, and x-ray absorption measurements, we observe that the hysteresis loop has a temperature width of more than 400 K, setting a record among crystalline solids. The transition has an origin distinct from known mechanisms, lying entirely within the incommensurate charge density wave (CDW) phase of EuTe_{4} with no change in the CDW modulation periodicity. We interpret the hysteresis as an unusual switching of the relative CDW phases in different layers, a phenomenon unique to quasi-2D compounds that is not present in either purely 2D or strongly coupled 3D systems. Our findings challenge the established theories on metastable states in density wave systems, pushing the boundary of understanding hysteretic transitions in a broken-symmetry state.

13.
Adv Mater ; 34(11): e2106401, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34958699

RESUMO

Understanding the phase transitions and domain evolutions of mesoscale topological structures in ferroic materials is critical to realizing their potential applications in next-generation high-performance storage devices. Here, the behaviors of a mesoscale supercrystal are studied with 3D nanoscale periodicity and rotational topology phases in a PbTiO3 /SrTiO3 (PTO/STO) superlattice under thermal and electrical stimuli using a combination of phase-field simulations and X-ray diffraction experiments. A phase diagram of temperature versus polar state is constructed, showing the formation of the supercrystal from a mixed vortex and a-twin state and a temperature-dependent erasing process of a supercrystal returning to a classical a-twin structure. Under an in-plane electric field bias at room temperature, the vortex topology of the supercrystal irreversibly transforms to a new type of stripe-like supercrystal. Under an out-of-plane electric field, the vortices inside the supercrystal undergo a topological phase transition to polar skyrmions. These results demonstrate the potential for the on-demand manipulation of polar topology and transformations in supercrystals using electric fields. The findings provide a theoretical understanding that may be utilized to guide the design and control of mesoscale polar structures and to explore novel polar structures in other systems and their topological nature.

14.
Nat Commun ; 12(1): 5744, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593814

RESUMO

Next-generation terahertz (THz) sources demand lightweight, low-cost, defect-tolerant, and robust components with synergistic, tunable capabilities. However, a paucity of materials systems simultaneously possessing these desirable attributes and functionalities has made device realization difficult. Here we report the observation of asymmetric spintronic-THz radiation in Two-Dimensional Hybrid Metal Halides (2D-HMH) interfaced with a ferromagnetic metal, produced by ultrafast spin current under femtosecond laser excitation. The generated THz radiation exhibits an asymmetric intensity toward forward and backward emission direction whose directionality can be mutually controlled by the direction of applied magnetic field and linear polarization of the laser pulse. Our work demonstrates the capability for the coherent control of THz emission from 2D-HMHs, enabling their promising applications on the ultrafast timescale as solution-processed material candidates for future THz emitters.

15.
Nano Lett ; 21(20): 8554-8562, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34623164

RESUMO

As a 3D topological insulator, bismuth selenide (Bi2Se3) has potential applications for electrically and optically controllable magnetic and optoelectronic devices. Understanding the coupling with its topological phase requires studying the interactions of carriers with the lattice on time scales down to the subpicosecond regime. Here, we investigate the ultrafast carrier-induced lattice contractions and interlayer modulations in Bi2Se3 thin films by time-resolved diffraction using an X-ray free-electron laser. The lattice contraction depends on the carrier concentration and is followed by an interlayer expansion accompanied by oscillations. Using density functional theory and the Lifshitz model, the initial contraction can be explained by van der Waals force modulation of the confined free carrier layers. Our theoretical calculations suggest that the band inversion, related to a topological phase transition, is modulated by the expansion of the interlayer distance. These results provide insights into the topological phase control by light-induced structural change on ultrafast time scales.

16.
Phys Rev Lett ; 127(9): 097402, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34506196

RESUMO

Optical excitation perturbs the balance of phenomena selecting the tilt orientation of domain walls within ferroelectric thin films. The high carrier density induced in a low-strain BaTiO_{3} thin film by an above-band-gap ultrafast optical pulse changes the tilt angle that 90° a/c domain walls form with respect to the substrate-film interface. The dynamics of the changes are apparent in time-resolved synchrotron x-ray scattering studies of the domain diffuse scattering. Tilting occurs at 298 K, a temperature at which the a/b and a/c domain phases coexist but is absent at 343 K in the better ordered single-phase a/c regime. Phase coexistence at 298 K leads to increased domain-wall charge density, and thus a larger screening effect than in the single-phase regime. The screening mechanism points to new directions for the manipulation of nanoscale ferroelectricity.

17.
Sci Rep ; 11(1): 19322, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588533

RESUMO

A fundamental understanding of materials' structural dynamics, with fine spatial and temporal control, underpins future developments in electronic and quantum materials. Here, we introduce an optical transient grating pump and focused X-ray diffraction probe technique (TGXD) to examine the structural evolution of materials excited by modulated light with a precisely controlled spatial profile. This method adds spatial resolution and direct structural sensitivity to the established utility of a sinusoidal transient-grating excitation. We demonstrate TGXD using two thin-film samples: epitaxial BiFeO3, which exhibits a photoinduced strain (structural grating) with an amplitude proportional to the optical fluence, and FeRh, which undergoes a magnetostructural phase transformation. In BiFeO3, structural relaxation is location independent, and the strain persists on the order of microseconds, consistent with the optical excitation of long-lived charge carriers. The strain profile of the structural grating in FeRh, in comparison, deviates from the sinusoidal excitation and exhibits both higher-order spatial frequencies and a location-dependent relaxation. The focused X-ray probe provides spatial resolution within the engineered optical excitation profile, resolving the spatiotemporal flow of heat through FeRh locally heated above the phase transition temperature. TGXD successfully characterizes mesoscopic energy transport in functional materials without relying on a specific transport model.

18.
Nano Lett ; 21(16): 6938-6945, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34428905

RESUMO

Direct optical probing of the antiferromagnetic order parameter in atomically thin samples is challenging, for example, via magneto-optical spectroscopy, due to the lack of net magnetization. Here, we report zigzag-antiferromagnetism (AFM) induced optical linear dichroism (LD) in layered transition-metal thiophosphate FePS3 down to the monolayer limit. The observed LD is giant despite having the optical wave vector parallel to the Néel vector. The LD is at least one order of magnitude larger than those reported in other antiferromagnetic systems, where the optical wave vector is orthogonal to the Néel vector. The large LD enables the probe of 60° orientated zigzag-AFM domains. The optical anisotropy in FePS3 originates from an electronic anisotropy associated with the zigzag direction of the AFM order and is independent of the spin-pointing direction. Our findings point to a new optical approach for the investigation and control of zigzag or stripe magnetic order in strongly correlated systems.

19.
Nature ; 592(7854): 376-380, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33854251

RESUMO

The collective dynamics of topological structures1-6 are of interest from both fundamental and applied perspectives. For example, studies of dynamical properties of magnetic vortices and skyrmions3,4 have not only deepened our understanding of many-body physics but also offered potential applications in data processing and storage7. Topological structures constructed from electrical polarization, rather than electron spin, have recently been realized in ferroelectric superlattices5,6, and these are promising for ultrafast electric-field control of topological orders. However, little is known about the dynamics underlying the functionality of such complex extended nanostructures. Here, using terahertz-field excitation and femtosecond X-ray diffraction measurements, we observe ultrafast collective polarization dynamics that are unique to polar vortices, with orders-of-magnitude higher frequencies and smaller lateral size than those of experimentally realized magnetic vortices3. A previously unseen tunable mode, hereafter referred to as a vortexon, emerges in the form of transient arrays of nanoscale circular patterns of atomic displacements, which reverse their vorticity on picosecond timescales. Its frequency is considerably reduced (softened) at a critical strain, indicating a condensation (freezing) of structural dynamics. We use first-principles-based atomistic calculations and phase-field modelling to reveal the microscopic atomic arrangements and corroborate the frequencies of the vortex modes. The discovery of subterahertz collective dynamics in polar vortices opens opportunities for electric-field-driven data processing in topological structures with ultrahigh speed and density.

20.
Phys Rev Lett ; 123(9): 097601, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31524450

RESUMO

Complex systems, which consist of a large number of interacting constituents, often exhibit universal behavior near a phase transition. A slowdown of certain dynamical observables is one such recurring feature found in a vast array of contexts. This phenomenon, known as critical slowing-down, is well studied mostly in thermodynamic phase transitions. However, it is less understood in highly nonequilibrium settings, where the time it takes to traverse the phase boundary becomes comparable to the timescale of dynamical fluctuations. Using transient optical spectroscopy and femtosecond electron diffraction, we studied a photoinduced transition of a model charge-density-wave (CDW) compound LaTe_{3}. We observed that it takes the longest time to suppress the order parameter at the threshold photoexcitation density, where the CDW transiently vanishes. This finding can be captured by generalizing the time-dependent Landau theory to a system far from equilibrium. The experimental observation and theoretical understanding of dynamical slowing-down may offer insight into other general principles behind nonequilibrium phase transitions in many-body systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...