Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(10): 17336-17344, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858919

RESUMO

The ensemble of nitrogen-vacancy (NV) centers is widely used in quantum information transmission, high-precision magnetic field, and temperature sensing due to their advantages of long-lived state and the ability to be pumped by optical cycling. In this study, we investigate the zero-phonon line behavior of the two charge states of NV centers by measuring the photoluminescence of the NV center at 1.6 K-300 K. The results demonstrate a positional redshift, an increase in line width, and a decrease in fluorescence intensity for the ZPL of NV0 and NV- as the temperature increased. In the range of 10 K to 140 K, the peak shift with high concentrations of NV- revealed an anomaly of bandgap reforming. The peak position undergoes a blueshift and then a redshift as temperature increases. Furthermore, the transformation between NV0 and NV- with temperature changes has been obtained in diamonds with different nitrogen concentrations. This study explored the ZPL characteristics of NV centers in various temperatures, and the findings are significant for the development of high-resolution temperature sensing and high-precision magnetic field sensing in ensemble NV centers.

2.
Opt Express ; 32(7): 10829-10840, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38570946

RESUMO

Imaging of electronic device surface or sub-surface electromagnetic fields under operating conditions is important for device design and diagnosis. In this study, we proposed a method to characterize specific magnetic field properties of electromagnetic devices at micron-scale using a solid-state quantum sensor, namely diamond nitrogen-vacancy (NV) centers. By employing a wide-field magnetic field measurement technique based on NV centers, we rapidly obtain the first-order magnetic field distribution of anomalous regions. Furthermore, we approximate the second-order magnetic field (magnetic gradient tensor) using the differential gradient method. To visualize the electromagnetic anomalous regions boundary, we utilize the tensor invariants of the magnetic gradient tensor components, along with their nonlinear combinations. The identification error rate of the anomalous regions is within 12.5%. Additionally, the electromagnetic field of anomalous regions is simulated showing the measurement accuracy. Our study shows that the experimental results are very similar to the theoretical simulation of the electromagnetic field (error: 7%). This work is essential for advancing electromagnetic field characterization of electronic devices and the advancement of quantum magnetic sensor applications.

3.
Opt Express ; 32(3): 3184-3193, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297545

RESUMO

In this paper, we propose a method for simultaneously recovering multiple radio wave signals based on nitrogen-vacancy (NV) centers in diamond combining optically detected magnetic resonance (ODMR) spectrum. A controlled magnetic field gradient applied to the laser excitation area on the surface of diamond widens the detectable ODMR bandwidth to 200 MHz. Three different frequency-modulated (FM) signals with distinct carrier frequencies falling within the resonance frequency range are received and demodulated in real-time. Subsequently, the FM signal reception capability of this system is further investigated by measuring baseband signal frequencies ranging from 0.1 Hz to 200 Hz and adjusting the carrier power within a dynamic range from -10 dBm to 30 dBm. This proposal, which accomplishes multi-channel demodulation using a compact and single device, has potential applications in fields such as wireless communication, radar and navigation.

4.
Sci Adv ; 9(39): eadi4799, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37756403

RESUMO

Single-atom catalysis of carbon monoxide oxidation on metal-oxide surfaces is crucial for greenhouse recycling, automotive catalysis, and beyond, but reports of the atomic-scale mechanism are still scarce. Here, using scanning probe microscopy, we show that charging single gold atoms on oxidized rutile titanium dioxide surface, both positively and negatively, considerably promotes adsorption of carbon monoxide. No carbon monoxide adsorption is observed on neutral gold atoms. Two different carbon monoxide adsorption geometries on gold atoms are identified. We demonstrate full control over the redox state of adsorbed gold single atoms, carbon monoxide adsorption geometry, and carbon monoxide adsorption/desorption by the atomic force microscopy tip. On charged gold atoms, we activate Eley-Rideal oxidation reaction between carbon monoxide and a neighboring oxygen adatom by the tip. Our results provide unprecedented insights into carbon monoxide adsorption and suggest that the gold dual activity for carbon monoxide oxidation after electron or hole attachment is also the key ingredient in photocatalysis under realistic conditions.

5.
Phys Chem Chem Phys ; 22(35): 19795-19801, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32844830

RESUMO

Understanding oxygen adsorption and dissociation on the five-fold coordinated titanium (Ti5c) site of the rutile TiO2 surface is important in clarifying chemical reaction processes. Accordingly, three different configurations of molecularly adsorbed O2, including parallel side-on, inclined side-on and end-on configurations, and their dissociation were directly observed with atomic resolution at 78 K by atomic force microscopy. Our results experimentally demonstrated that the three adsorbed O2 configurations could be changed by electric field stimulation. The initial configurations of the adsorbed O2 and transition of O2 configurations were related to their coverage. On the other hand, the tunneling current stimulation could dissociate these O2 species, indicating that they are precursors for the O adatom (Oad). It is proposed that the effect of electric field stimulation contributes to the transition of these three adsorbed O2 configurations, and the effect of the tunneling current is the main factor for the dissociation of the adsorbed O2. In addition, based on the atomic contrast and height histograms of Oad, different charge states of Oad were observed, which could coexist on the surface region. The present study demonstrates an intuitional observation of O2 adsorption and dissociation on the Ti5c site, and thus is expected to be useful to understand the surface reactions on the oxide surface.

6.
Nanomaterials (Basel) ; 10(8)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751956

RESUMO

We studied the O2 dissociated state under the different O2 exposed temperatures with atomic resolution by scanning probe microscopy (SPM) and imaged the O adatom by simultaneous atomic force microscopy (AFM)/scanning tunneling microscopy (STM). The effect of AFM operation mode on O adatom contrast was investigated, and the interaction of O adatom and the subsurface defect was observed by AFM/STM. Multi-channel exploration was performed to investigate the charge transfer between the adsorbed O and the TiO2(110) by obtaining the frequency shift, tunneling current and local contact potential difference at an atomic scale. The tunneling current image showed the difference of the tunneling possibility on the single O adatom and paired O adatoms, and the local contact potential difference distribution of the O-TiO2(110) surface institutively revealed the charge transfer from TiO2(110) surface to O adatom. The experimental results are expected to be helpful in investigating surface/interface properties by SPM.

7.
Nanoscale Adv ; 2(6): 2371-2375, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-36133366

RESUMO

The charge state of Au nanoclusters on oxidized/reduced rutile TiO2 (110) surfaces were investigated by a combination of non-contact atomic force microscopy and Kelvin probe force microscopy at 78 K under ultra-high vacuum. We found that the Au nanoclusters supported on oxidized/reduced surfaces had a relatively positive/negative charge state, respectively, compared with the substrate. In addition, the distance dependence of LCPD verified the contrast observed in the KPFM images. The physical background of charge transfer observation can be explained by the model of charge attachment/detachment from multiple oxygen vacancies/adatoms surrounding Au nanoclusters. These results suggest that the electronic properties of the Au nanoclusters are dramatically influenced by the condition of the support used.

8.
Beilstein J Nanotechnol ; 10: 1228-1236, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293860

RESUMO

Although step structures have generally been considered to be active sites, their role on a TiO2 surface in catalytic reactions is poorly understood. In this study, we measured the contact potential difference around the steps on a rutile TiO2(110)-(1 × 1) surface with O2 exposure using Kelvin probe force microscopy. A drop in contact potential difference was observed at the steps, indicating that the work function locally decreased. Moreover, for the first time, we found that the drop in contact potential difference at a <1-11> step was larger than that at a <001> step. We propose a model for interpreting the surface potential at the steps by combining the upward dipole moment, in analogy to the Smoluchowski effect, and the local dipole moment of surface atoms. This local change in surface potential provides insight into the important role of the steps in the catalytic reaction.

9.
ACS Nano ; 13(6): 6917-6924, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31180628

RESUMO

We study a low-temperature on-surface reversible chemical reaction of oxygen atoms to molecules in ultrahigh vacuum on the semiconducting rutile TiO2(110)-(1 × 1) surface. The reaction is activated by charge transfer from two sources, natural surface/subsurface polarons and experimental Kelvin probe force spectroscopy as a tool for electronic charge manipulation with single electron precision. We demonstrate a complete control over the oxygen species not attainable previously, allowing us to deliberately discriminate in favor of charge or bond manipulation, using either direct charge injection/removal through the tip-oxygen adatom junction or indirectly via polarons. Comparing our ab initio calculations with experiment, we speculate that we may have also manipulated the spin on the oxygens, allowing us to deal with the singlet/triplet complexities associated with the oxygen molecule formation. We show that the manipulation outcome is fully governed by three experimental parameters, vertical and lateral tip positions and the bias voltage.

10.
J Am Chem Soc ; 140(46): 15668-15674, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30403344

RESUMO

For the first time, the charge states of adsorbed oxygen adatoms on the rutile TiO2(110)-1×1 surface are successfully measured and deliberately manipulated by a combination of noncontact atomic force microscopy and Kelvin probe force microscopy at 78 K under ultrahigh vacuum and interpreted by extensive density functional theory modeling. Several kinds of single and double oxygen adatom species are clearly distinguished and assigned to three different charge states: Oad-/2Oad-, Oad2-/2Oad2-, and Oad--Oad2-, i.e., formal charges of either one or two electrons per atom. Because of the strong atomic-scale image contrast, these states are clearly resolved. The observations are supported by measurements of the short-range force and local contact potential difference as a function of the tip-sample distance as well as simulations. Comparison with the simulations suggests subatomic resolution by allowing us to resolve the rotated oxygen p orbitals. In addition, we manage to reversibly switch the charge states of the oxygen adatoms between the Oad- and Oad2- states, both individually and next to another oxygen, by modulating the frequency shift at constant positive voltage during both charging and discharging processes, i.e., by the tip-induced electric field of one orientation. This work provides a novel route for the investigation of the charge state of the adsorbates and opens up novel prospects for studying transition-metal-oxide-based catalytic reactions.

11.
Phys Chem Chem Phys ; 20(44): 28331-28337, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30398504

RESUMO

Clarifying the atomic configuration of step edges on a rutile TiO2 surface is crucial for understanding its fundamental reactivity, and the direct observation of atomic step edges is still a challenge. AFM is a powerful tool for investigating surface structures with true atomic resolution, and it provides the opportunity to resolve the real structure of step edges with improved techniques. In this work, we successfully imaged the atomic configuration of 001 and 1-11 step edges on the surface of rutile TiO2(110)-(1 × 1), and we present the direct observation of oxygen vacancies along the 1-11 step edges, indicating that one 1-11 step edge site corresponds to one oxygen vacancy using AFM. We also made use of the simultaneous AFM/STM measurements to explore the electronic structure of step edges, which enhanced the evidence of oxygen vacancies existing along the 1-11 step edges and further demonstrated that the 001 step edge was terminated by an O row. The effect of the reduced 1-11 step edges was explored by probing the O2 adsorption and the nucleation behavior of gold clusters. It was found that oxygen vacancies along the 1-11 step edges could contribute to O2 dissociative adsorption and there was no obvious difference compared with the oxygen vacancies on the flat terrace. The reduced step edge and terrace likewise acted as nucleation and growth sites for gold atoms/nanoparticles, in line with previous reports. The present study provides a complete characterization of the atomic configuration of the step edges on the TiO2(110) surface and plays an important role in investigating the surface chemistry of metal oxides.

12.
Nanotechnology ; 29(10): 105504, 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29313525

RESUMO

We have carried out high-speed imaging of the topography and local contact potential difference (LCPD) on rutile TiO2(110) in O2 gas by atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We succeeded in KPFM/AFM imaging with atomic resolution at 1 frame min-1 and observed the adsorbate on a hydroxylated TiO2(110) surface. The observed adsorbate is considered to be oxygen adatoms (Oa), hydroperoxyls (HO2), or terminal hydroxyls (OHt). After adsorption, changes in the topography and the LCPD of the adsorbate were observed. This phenomenon is thought to be caused by the charge transfer of the adsorbate. This technique has the potential to observe catalytic behavior with atomic resolution.

13.
Nanotechnology ; 28(10): 105704, 2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28164861

RESUMO

We propose a new multi-image method for obtaining the frequency shift, tunneling current and local contact potential difference (LCPD) on a TiO2(110) surface with atomic resolution. The tunneling current image reveals rarely observed surface oxygen atoms contrary to the conventional results. We analyze how the surface and subsurface defects affect the distribution of the LCPD. In addition, the subsurface defects are observed clearly in the tunneling current image, in contrast to a topographic image. To clarify the origin of the atomic contrast, we perform site-dependent spectroscopy as a function of the tip-sample distance. The multi-image method is expected to be widely used to investigate the charge transfer phenomena between the nanoparticles and surface sites, and it is useful for elucidating the mechanisms of catalytic reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...