Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38611948

RESUMO

The aqueous instability of halide perovskite seriously hinders its direct application in water as a potential photocatalyst. Here, we prepared a new type of polyvinylpyrrolidone (PVP) passivated δ-CsPbI3 (δ-CsPbI3@PVP) microcrystal by a facile method. This material can be uniformly dispersed in water and stably maintain its crystal structure for a long time, breaking through the bottleneck of halide perovskite photocatalysis in water. Under visible light, δ-CsPbI3@PVP can almost completely photodegrade organic dyes (including Rhodamine B, methylene blue, and crystal violet) in only 20 min. The efficient photocatalytic activity is attributed to the enhanced visible light absorption arising from PbI2 defects in δ-CsPbI3@PVP and the intrinsic low photoluminescence quantum yield of δ-CsPbI3, which induces efficient light absorption and photocatalytic activity. We highlight δ-CsPbI3@PVP as an effective aqueous photocatalyst, and this study provides new insights into how to exploit the potential of halide perovskite in photocatalytic applications.

2.
J Biochem Mol Toxicol ; 38(4): e23705, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38602237

RESUMO

We explored the role and mechanism of circular RNAcircNRD1 in gastric cancer (GC) progression, aiming to identify new bio-markers for the treatment and prognosis of GC patients. The RNA expression was examined by reverse transcription-quantitative polymerase chain reaction. Cell proliferation, migration and invasion were analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay, scratch assay and transwell assay. Western blot assay was conducted for protein expression measurement. Dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays were conducted to verify the interaction between microRNA-421 (miR-421) and circNRD1 or THAP domain containing 11 (THAP11). Xenograft tumor model was established to perform in vivo experiments. CircNRD1 was notably downregulated in GC tissues and cell lines. Additionally, decreased circNRD1 level was closely associated with advanced tumor stage and dismal prognosis in GC patients. CircNRD1 overexpression suppressed the proliferation and metastasis of GC cells. CircNRD1 acted as a molecular sponge for miR-421 in GC cells, and the antitumor impacts of circNRD1 overexpression in GC cells could be alleviated by miR-421 overexpression. miR-421 directly targeted THAP11, and circNRD1 could up-regulate THAP11 expression in GC cells through sponging miR-421. THAP11 knockdown reversed circNRD1 overexpression-induced tumor suppressing effects in GC cells. CircNRD1 overexpression significantly blocked tumor growth in vivo. CircNRD1 suppressed the proliferation and metastasis of GC cells in vitro and blocked tumor growth in vivo via modulating miR-421/THAP11 axis.


Assuntos
MicroRNAs , RNA Circular , Neoplasias Gástricas , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , MicroRNAs/genética , Proteínas Repressoras , Neoplasias Gástricas/genética , RNA Circular/metabolismo
3.
Molecules ; 28(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37959730

RESUMO

Inorganic halide perovskite CsPbI3 is highly promising in the photocatalytic field for its strong absorption of UV and visible light. Among the crystal phases of CsPbI3, the δ-phase as the most aqueous stability; however, directly using it in water is still not applicable, thus limiting its dye photodegradation applications in aqueous solutions. Via adopting nitrogen-doped graphene quantum dots (NGQDs) as surfactants to prepare δ-phase CsPbI3 nanocrystals, we obtained a water-stable material, NGQDs-CsPbI3. Such a material can be well dispersed in water for a month without obvious deterioration. High-resolution transmission electron microscopy and X-ray diffractometer characterizations showed that NGQDs-CsPbI3 is also a δ-phase CsPbI3 after NGQD coating. The ultraviolet-visible absorption spectra indicated that compared to δ-CsPbI3, NGQDs-CsPbI3 has an obvious absorption enhancement of visible light, especially near the wavelength around 521 nm. The good dispersity and improved visible-light absorption of NGQDs-CsPbI3 benefit their aqueous photocatalytic applications. NGQDs-CsPbI3 alone can photodegrade 67% rhodamine B (RhB) in water, while after compositing with TiO2, NGQDs-CsPbI3/TiO2 exhibits excellent visible-light photocatalytic ability, namely, it photodegraded 96% RhB in 4 h. The strong absorption of NGQDs-CsPbI3 in the visible region and effective transfer of photogenerated carriers from NGQDs-CsPbI3 to TiO2 play the key roles in dye photodegradation. We highlight NGQDs-CsPbI3 as a water-stable halide perovskite material and effective photocatalytic adjuvant.

4.
Comput Biol Med ; 166: 107517, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37778214

RESUMO

Electroencephalogram (EEG) signal contains important information about abnormal brain activity, which has become an important basis for epilepsy diagnosis. Recently, epilepsy EEG signal classification methods mainly extract features from the perspective of a single domain, which cannot effectively utilize the spatial domain information in EEG signals. The redundant information in EEG signals will affect the learning features with the increase of convolution layer and multi-domain features, resulting in inefficient learning and a lack of distinguishing features. To tackle these issues, we propose an end-to-end 3D convolutional multiband seizure-type classification model based on attention mechanisms. Specifically, to process preprocessed electroencephalogram (EEG) data, a multilevel wavelet decomposition is applied to obtain the joint distribution information in the two-dimensional time-frequency domain across multiple frequency bands. Subsequently, this information is transformed into three-dimensional spatial data based on the electrode configuration. Discriminative joint activity features in the time, frequency, and spatial domains are then extracted by a series of parallel 3D convolutional sub-networks, where 3D channels and spatial attention mechanisms improve the ability to learn critical global and local information. A multi-layer perceptron is finally implemented to integrate the extracted features and further map them to the classification results. Experimental results on the TUSZ dataset, the world's largest publicly available seizure corpus, show that 3D-CBAMNet significantly outperforms the state-of-the-art methods, indicating effectiveness in the seizure type classification task.

5.
Discov Oncol ; 14(1): 187, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37861728

RESUMO

BACKGROUND: Breast carcinoma (BRCA) is one of the most common, fatal, and aggressive cancers, with increasing morbidity that has a major impact on human health. PIK3CD appears to have important roles in the beginning and advancement of various forms of human cancer, according to mounting data. However,the particular role and mechanism of PIK3CD in BRCA remains not fully identified. METHODOLOGY: The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/ ), Genotype-Tissue Expression (GTEx) data and the UCSC Xena browser ( https://xenabrowser.net ) data were used in this study's initial pan-cancer analysis of PIK3CD expression and prognosis. Circular RNAs (circRNAs) that regulated the expression of PIK3CD were subsequently found using a combination of in silico investigations of expression, correlation, and survival. Measurements of PIK3CD expression and an analysis of the in vitro function of PIK3CD in BRCA cells were performed using real-time RT-PCR, Western blotting and Transwell assays. RESULTS: In BRCA GLI2, RAB32, LAMB1, MGAT2, ITGA8, CHF, COL6A3 and PRRX1-miR-30b-5p axis was identified as the most likely upstream CircRNA-related route of PIK3CD. PIK3CD was correlated with the expression of EMT markers. The PIK3CD cDNA improved the capacity for invasion and migration. The expression of PIK3CD was linked to some of the m1A/m5C/m6A regulators. Additionally, it was discovered that the expression of PIK3CD was found to be highly connected to the expression of immunological checkpoints, immune cell biomarkers, and tumor immune cell invasion. CONCLUSIONS: Our findings reveal that PIK3CD expression is associated with prognosis, EMT, and tumor immune infiltration in BRCA patients.

6.
Molecules ; 28(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37687134

RESUMO

The exploration of low-cost, high-performance adsorbents is a popular research issue. In this work, a straightforward method that combined hydrothermal with tube firing was used to produce Osmanthus fragrans biomass charcoal (OBC) from low-cost osmanthus for dye adsorption in water. The study examined the parameters of starting concentration, pH, and duration, which impacted the process of adsorption of different dyes by OBC. The analysis showed that the adsorption capacities of OBC for six dyes: malachite green (MG, C0 = 800 mg/L, pH = 7), Congo red (CR, C0 = 1000 mg/L, pH = 8), rhodamine B (RhB, C0 = 500 mg/L, pH = 6), methyl orange (MO, C0 = 1000 mg/L, pH = 7), methylene blue (MB, C0 = 700 mg/L, pH = 8), and crystalline violet (CV, C0 = 500 mg/L, pH = 7) were 6501.09, 2870.30, 554.93, 6277.72, 626.50, and 3539.34 mg/g, respectively. The pseudo-second-order model and the Langmuir isotherm model were compatible with the experimental findings, which suggested the dominance of ion exchange and chemisorption. The materials were characterized by using XRD, SEM, FTIR, BET, and XPS, and the results showed that OBC had an outstanding specific surface area (2063 m2·g-1), with potential adsorption mechanisms that included electrostatic mechanisms, hydrogen bonding, and π-π adsorption. The fact that the adsorption capacity did not drastically decrease after five cycles of adsorption and desorption suggests that OBC has the potential to be a dye adsorbent.


Assuntos
Corantes , Oleaceae , Águas Residuárias , Carvão Vegetal , Biomassa , Vermelho Congo
7.
Nat Mater ; 22(10): 1253-1260, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37604908

RESUMO

Hydrogel materials show promise for diverse applications, particular as biocompatible materials due to their high water content. Despite advances in hydrogel technology in recent years, their application is often severely limited by inadequate mechanical properties and time-consuming fabrication processes. Here we report a rapid hydrogel preparation strategy that achieves the simultaneous photo-crosslinking and establishment of biomimetic soft-hard material interface microstructures. These biomimetic interfacial-bonding nanocomposite hydrogels are prepared within seconds and feature clearly separated phases but have a strongly bonded interface. Due to effective interphase load transfer, biomimetic interfacial-bonding nanocomposite gels achieve an ultrahigh toughness (138 MJ m-3) and exceptional tensile strength (15.31 MPa) while maintaining a structural stability that rivals or surpasses that of commonly used elastomer (non-hydrated) materials. Biomimetic interfacial-bonding nanocomposite gels can be fabricated into arbitrarily complex structures via three-dimensional printing with micrometre-level precision. Overall, this work presents a generalizable preparation strategy for hydrogel materials and acrylic elastomers that will foster potential advances in soft materials.

8.
Angew Chem Int Ed Engl ; 62(40): e202307880, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37584605

RESUMO

Although additives are widely used in aqueous electrolytes to inhibit the formation of dendrites and hydrogen evolution reactions on Zn anodes, there is a lack of rational design principles and systematic mechanistic studies on how to select a suitable additive to regulate reversible Zn plating/stripping chemistry. Here, using saccharides as the representatives, we reveal that the electrostatic polarity of non-sacrificial additives is a critical descriptor for their ability to stabilize Zn anodes. Non-sacrificial additives are found to continuously modulate the solvation structure of Zn ions and form a molecular adsorption layer (MAL) for uniform Zn deposition, avoiding the thick solid electrolyte interphase layer due to the decomposition of sacrificial additives. A high electrostatic polarity renders sucrose the best hydrated Zn2+ desolvation ability and facilitates the MAL formation, resulting in the best cycling stability with a long-term reversible plating/stripping cycle life of thousands of hours. This study provides theoretical guidance for the screening of optimal additives for high-performance ZIBs.

9.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240268

RESUMO

In this study, sugarcane bagasse (SCB) was treated with sodium hydroxide and bleached to separate the non-cellulose components to obtain cellulose (CE) fibres. Cross-linked cellulose-poly(sodium acrylic acid) hydrogel (CE-PAANa) was successfully synthesised via simple free-radical graft-polymerisation to remove heavy metal ions. The structure and morphology of the hydrogel display an open interconnected porous structure on the surface of the hydrogel. Various factors influencing batch adsorption capacity, including pH, contact time, and solution concentration, were investigated. The results showed that the adsorption kinetics were in good agreement with the pseudo-second-order kinetic model and that the adsorption isotherms followed the Langmuir model. The maximum adsorption capacities calculated by the Langmuir model are 106.3, 333.3, and 163.9 mg/g for Cu(II), Pb(II), and Cd(II), respectively. Furthermore, X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectrometry (EDS) results demonstrated that cationic exchange and electrostatic interaction were the main heavy metal ions adsorption mechanisms. These results demonstrate that CE-PAANa graft copolymer sorbents from cellulose-rich SCB can potentially be used for the removal of heavy metal ions.


Assuntos
Metais Pesados , Saccharum , Poluentes Químicos da Água , Celulose/química , Metais Pesados/química , Íons , Hidrogéis/química , Adsorção , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
10.
Molecules ; 28(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37241896

RESUMO

Photocatalysis holds great promise for addressing water pollution caused by organic dyes, and the development of Ag2O/Fe3O4 aims to overcome the challenges of slow degradation efficiency and difficult recovery of photocatalysts. In this study, we present a novel, environmentally friendly Ag2O/Fe3O4 magnetic nanocomposite synthesized via a simple coprecipitation method, which not only constructs a type II heterojunction but also successfully couples photocatalysis and Fenton reaction, enhancing the broad-spectrum response and efficiency. The Ag2O/Fe3O4 (10%) nanocomposite demonstrates exceptional degradation performance toward organic dyes, achieving 99.5% degradation of 10 mg/L methyl orange (MO) within 15 min under visible light irradiation and proving its wide applicability by efficiently degrading various dyes while maintaining high stability over multiple testing cycles. Magnetic testing further highlighted the ease of Ag2O/Fe3O4 (10%) recovery using magnetic force. This innovative approach offers a promising strategy for constructing high-performance photocatalytic systems for addressing water pollution caused by organic dyes.

11.
Materials (Basel) ; 16(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37049130

RESUMO

Methyl orange dye (MO) is one of the azo dyes, which is not only difficult to degrade but also hazardous to human health, therefore, it is necessary to develop an efficient photocatalyst to degrade MO. In this paper, a facile and low-cost elemental doping method was used for the surface modification of Ti3C2 MXene, i.e., nitrogen-doped titanium carbide was used as the nitrogen source, and the strategy of combining solvent heat treatment with non-in situ nitrogen doping was used to prepare N-Ti3C2 MXene two-dimensional nanomaterials with high catalytic activity. It was found that the catalytic efficiency of N-Ti3C2 MXene materials was enhanced and improved compared to the non-doped Ti3C2 MXene. In particular, N-Ti3C2 1:8 MXene showed the best photo-catalytic ability, as demonstrated by the fact that the N-Ti3C2 1:8 MXene material successfully degraded 98.73% of MO (20 mg/L) under UV lamp irradiation for 20 min, and its catalytic efficiency was about ten times that of Ti3C2 MXene, and the N-Ti3C2 photo-catalyst still showed good stability after four cycles. This work shows a simplified method for solvent heat-treating non-in situ nitrogen-doped Ti3C2 MXene, and also elaborates on the photo-catalytic mechanism of N-Ti3C2 MXene, showing that the high photo-catalytic effect of N-Ti3C2 MXene is due to the synergistic effect of its efficient charge transfer and surface-rich moieties. Therefore, N-Ti3C2 MXene has a good prospect as a photo-catalyst in the photocatalytic degradation of organic pollutants.

12.
Molecules ; 28(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37110871

RESUMO

In this paper, a novel phosphorus-doped sulfur quantum dots (P-SQDs) material was prepared using a simple hydrothermal method. P-SQDs have a narrow particle size distribution as well as an excellent electron transfer rate and optical properties. Compositing P-SQDs with graphitic carbon nitride (g-C3N4) can be used for photocatalytic degradation of organic dyes under visible light. More active sites, a narrower band gap, and stronger photocurrent are obtained after introducing P-SQDs into g-C3N4, thus promoting its photocatalytic efficiency by as much as 3.9 times. The excellent photocatalytic activity and reusability of P-SQDs/g-C3N4 are prospective signs of its photocatalytic application under visible light.

13.
Appl Microbiol Biotechnol ; 107(11): 3479-3494, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37115250

RESUMO

Microbial-induced carbonate precipitation (MICP) is being investigated to repair concrete cracks because of its good durability and compatibility with cementitious matrix. However, during the in-situ application, the repairing often lasts weeks, even months. And the strength regain is quite low. The repairing time is largely determined by the CaCO3 yield, and the strength regain after the repair is closely related to the cohesion and bonding strength of CaCO3 itself. Thus, the purpose of this paper is to obtain an efficient precipitation of bio-CaCO3 with both high yield and good cohesion to improve the in-situ repairing efficiency. Firstly, the most influential factors on urease activity were screened and the precipitation kinetics were detailly investigated. The results show that the CaCO3 with the largest yield and cohesion was obtained when the bacterial concentration was 107 cells/mL and the concentration of urea and calcium was both 0.5 M at 20 °C. This weight loss of bio-CaCO3 was 9.24% under ultrasonic attack. Secondly, two models were established to quantify or semi-quantify the relationship between the most influential factors and the yield and cohesion of precipitates, respectively. The results showed the order of contribution for bio-CaCO3 precipitation was calcium ions concentration > bacterial concentration > urea concentration > temperature > initial pH. According to these models, the required yield and cohesion of CaCO3 by engineering could be obtained by adjusting affecting factors. Models were proposed for guiding the application of MICP in practical engineering. KEY POINTS: • Screened the most affecting factors on urease activity and investigated the precipitation kinetics. • Obtained optimal conditions of bio-CaCO. • Established two models in order to give some guidance for practical civil engineering.


Assuntos
Cálcio , Urease , Carbonato de Cálcio , Precipitação Química , Bactérias , Ureia
14.
Inorg Chem ; 61(29): 11218-11231, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35834800

RESUMO

Pt(II) complexes are promising phosphorescent materials for organic light-emitting diode (OLED) applications in the fields of display, lighting, healthcare, aerospace, and so on. A series of novel biphenyl (bp)-based tetradentate 6/5/6 Pt(II) emitters using oxygen or carbon as a linking atom was designed and developed. The intermolecular interactions in crystal packing, electrochemical, and photophysical properties of the bp-based Pt(II) emitters and also their excited-state properties were systematically studied, which could be effectively regulated by ligand modification through linking group control; however, their emission spectra nearly showed no change. All the bp-based Pt(II) emitters exhibited vibronically featured emission spectra with dominant peaks at 502-505 nm and photoluminescent quantum yields of 24-34% in dichloromethane solution. Green OLED using Pt(bp-12) as an emitter achieved a maximum brightness (Lmax) of 16,644 cd/m2.

15.
Materials (Basel) ; 14(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34772085

RESUMO

High-temperature components in power plants may fail due to creep and fatigue. Creep damage is usually accompanied by the nucleation, growth, and coalescence of grain boundary cavities, while fatigue damage is caused by excessive accumulated plastic deformation due to the local stress concentration. This paper proposes a multiscale numerical framework combining the crystal plastic frame with the meso-damage mechanisms. Not only can it better describe the deformation mechanism dominated by creep from a microscopic viewpoint, but also reflects the local damage of materials caused by irreversible microstructure changes in the process of creep-fatigue deformation to some extent. In this paper, the creep-fatigue crack initiation analysis of a modified 12%Cr steel (X12CrMoWvNBN10-1-1) is carried out for a given notch specimen. It is found that creep cracks usually initiate at the triple grain boundary junctions or at the grain boundaries approximately perpendicular to the loading direction, while fatigue cracks always initiate from the notch surface where stress is concentrated. In addition to this, the crack initiation life can be quantitatively described, which is affected by the average grain size, initial notch size, stress range and holding time.

16.
Appl Immunohistochem Mol Morphol ; 29(10): 720-727, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34433181

RESUMO

The human aspartyl ß-hydroxylase (ASPH) is overexpressed in tumor tissues. Bronchoalveolar lavage (BAL) is a diagnostic procedure for infections and malignancies. The aim of this study was to investigate whether tumor exosomes carrying ASPH gene marker were present in bronchoalveolar fluid of patients with non-small cell lung cancer (NSCLC). A tissue microarray analysis was applied to explore the expression of ASPH in different histologic NSCLC. The human NSCLC cell lines and normal bronchial cell lines were used to study exosomal ASPH exprerssion. A total of 27 NSCLC, 21 benign tumor, and 15 healthy controls underwent BAL. Immunohistochemistry was performed to study the ASPH expression in malignant and normal lung tissues. The expression characteristics of ASPH in different NSCLC and normal bronchial cells and pneumocytes were confirmed by cell blocks. A reverse transcription-quantitative polymerase chain reaction was carried out to study the levels of exosomal ASPH expression. Immunohistochemical staining of tissue microarray demonstrated that overexpression of ASPH was found in NSCLC tissues including adenocarcinoma, large cell carcinoma, and squamous cell carcinoma, but absent in adjacent normal tissues. All NSCLC specimens exhibited high levels of ASPH immunoreactivity, while nonmalignant and normal lung tissues exhibited a very low level of expression. Overexpression of ASPH was found in exosomes from NSCLC cell lines but absent from the normal bronchial cell line NL-20. ASPH level from BAL exosomes was significantly increased in NSCLC patients compared with that from nonmalignant or health group. Our method of isolation of BAL exosomes was easily performed in the clinical laboratory. BAL exosomal ASPH can be a potential biomarker for NSCLC diagnosis.


Assuntos
Lavagem Broncoalveolar , Proteínas de Ligação ao Cálcio/biossíntese , Carcinoma Pulmonar de Células não Pequenas , Exossomos/enzimologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Proteínas de Membrana/biossíntese , Oxigenases de Função Mista/biossíntese , Proteínas Musculares/biossíntese , Proteínas de Neoplasias/biossíntese , Células A549 , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia
17.
Molecules ; 26(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206960

RESUMO

High-photoluminescence (PL) graphene quantum dots (GQDs) were synthesized by a simple one-pot hydrothermal process, then separated by dialysis bags of different molecular weights. Four separated GQDs of varying sizes were obtained and displayed different PL intensities. With the decreasing size of separated GQDs, the intensity of the emission peak becomes much stronger. Finally, the GQDs of the smallest size revealed the most energetic PL intensity in four separated GQDs. The PL energy of all the separated GQDs shifted slightly, supported by density functional theory calculations.

18.
Water Sci Technol ; 81(2): 333-344, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32333666

RESUMO

Simultaneous nitrification and denitrification under low dissolved oxygen conditions is an energy-saving modification of the activated sludge process to achieve efficient nitrogen removal. Geographically distinct full-scale treatment plants are excellent platforms to address the links of microbial community with operating parameters. Mixed liquor samples were collected from a sequencing batch reactor plant, oxidation ditch plant, and step-feed activated sludge plant. Next-Generation Sequencing of the samples showed that the microbial communities were similar at the phylum level among the plants, being dominated by Proteobacteria. Microbial composition of functional groups was similar between the react fill and react phases of the sequencing batch reactors, among four sequencing batch reactors, and among four oxidation ditches. Nitrospira was the only identified genus of autotropic nitrifying bacteria with a relative abundance of 2.2-2.5% in the oxidation ditches and 0.4-0.7% at the other plants. Heterotrophic nitrifying-aerobic denitrifying bacteria were dominated by Dechloromonas with a relative abundance of 0.4-1.0%. Microbial community composition and nitrogen removal mechanisms were related to overall level and local zonation of dissolved oxygen, mixed liquor suspended solids concentration, nitrogen and organic loadings, and solids retention time. Low dissolved oxygen and low organic and nitrogen loadings favored growth of Nitrospira.


Assuntos
Microbiota , Nitrificação , Reatores Biológicos , Desnitrificação , Nitrogênio , Esgotos
19.
Mol Genet Genomic Med ; 8(4): e1125, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32077635

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNA) are important in the growth and metastasis of colon cancer. The objective of this study was to describe the potential role of lncRNA NEAT1 in the progression of colon cancer. METHODS: Quantitative real-time polymerase chain reaction was used for detecting NEAT1, miR-185-5p, and IGF2 in colon cancer cells and tissues. The potential diagnostic value of NEAT1 in colon cancer was analyzed with the receiver operating characteristic curve. Kaplan-Meier method was applied for evaluating the association between NEAT1 expression and the overall survival of osteosarcoma patients, whereas Transwell assay was introduced to examine the potential invasion and migration of colon cancer cells. In addition, the binding of NEAT1/IGF2 to miR-185-5p was confirmed by RNA pull-down and RNA-binding protein immunoprecipitation assays and dual-luciferase reporter gene assay. Finally, rescue experiments were conducted to confirm the role of NEAT1/miR-185-5p/IGF2 axis in colon cancer. RESULTS: Colon cancer patients with low NEAT1 expression presented with longer overall survival than those with high expression. The migration and invasion of colon cancer cells were considerably promoted by overexpressed NEAT1. Both NEAT1 and IGF2 bound to miR-185-5p. CONCLUSION: NEAT1 upregulate IGF2 expression through absorbing miR-185-5p to enhances the migration and invasion of colon cancer cells.


Assuntos
Neoplasias do Colo/genética , Fator de Crescimento Insulin-Like II/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Movimento Celular , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Fator de Crescimento Insulin-Like II/metabolismo , MicroRNAs/metabolismo , Invasividade Neoplásica , RNA Longo não Codificante/metabolismo , Regulação para Cima
20.
Small ; 15(25): e1901313, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31066493

RESUMO

High-performance wearable supercapactors (SCs) are gaining prominence as portable energy storage devices. To further enhance both energy and power density, the significant relationship between structure and performance inspires a delicate design of 3D patternable supercapacitors with a hierarchical architecture of porous conductive fibers composited with pseudocapacitive materials. In this work, the polypyrrole nanowires arrays decorated 3D graphite felt fiber assembly is initially fabricated as the conductive scaffold, followed by the distribution of the highly conductive and pseudocapacitive NiCoSe2 nanoparticles. Moreover, to realize the goal of standardized batch and pattern processing of the wearable SCs, laser engraving and silicone sealing techniques are employed, and SC devices with different patterns are successfully fabricated and encapsulated. Notably, the resulting SCs exhibit both stable electrochemical performance and effective waterproof properties, with the highest specific capacitance of 5.21 F cm-3 (113.36 F g-1 ) at the current density of 0.025 A cm-3 (0.5 F g-1 ), and the highest energy density of 1.09 mWh cm-3 (22.14 Wh kg-1 ) at a power density of 16.5 mW cm-3 (358.7 W kg-1 ).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...