Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Front Immunol ; 15: 1381130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711499

RESUMO

Background: Wheat allergy (WA), characterized by immunological responses to wheat proteins, is a gluten-related disorder that has become increasingly recognized in recent years. Bibliometrics involves the quantitative assessment of publications within a specific academic domain. Objectives: We aimed to execute an extensive bibliometric study, focusing on the past 30 years of literature related to wheat allergy. Methods: We searched the Web of Science database on 5th Dec 2023. We used the keywords "wheat allergy or wheat anaphylaxis or wheat hypersensitivity," "gliadin allergy or gliadin anaphylaxis or gliadin hypersensitivity," "wheat-dependent exercise-induced anaphylaxis," and "baker's asthma" for our search. All items published between 1993 and 2023 were included. The top 100 most cited articles were identified and analyzed. Results: Our study conducted an in-depth bibliometric analysis of the 100 most-cited articles in the field of wheat allergy, published between 2002 and 2019. These articles originated from 20 different countries, predominantly Japan and Germany. The majority of these articles were centered on the pathogenesis and treatment of wheat allergy (WA). The Journal of Allergy and Clinical Immunology (JACI) was the most prolific contributor to this list, publishing 14 articles. The article with the highest citation count was published by Biomed Central (BMC) and garnered 748 citations. The peak citation year was 2015, with a total of 774 citations, while the years 1998, 2001, and 2005 saw the highest publication frequency, each with 7 articles. Conclusion: Our study aims to provide physicians and researchers with a historical perspective for the scientific progress of wheat allergy, and help clinicians effectively obtain useful articles that have a significant impact on the field of wheat allergy.


Assuntos
Bibliometria , Hipersensibilidade a Trigo , Hipersensibilidade a Trigo/imunologia , Hipersensibilidade a Trigo/epidemiologia , Humanos , Triticum/imunologia , Triticum/efeitos adversos , Gliadina/imunologia , Publicações Periódicas como Assunto/tendências , Alérgenos/imunologia
2.
Int J Soc Psychiatry ; : 207640241245932, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616508

RESUMO

BACKGROUND: Few studies have examined whether social support contributes to better consequences among chronic patients with severe mental illnesses (SMI) in their community recovery stage and whether self-stigma would be a mechanism through which social support impacts psychiatric symptoms and personal and social functioning. AIMS: This study aimed to examine prospective associations of social support with long-term self-stigma, psychiatric symptoms, and personal and social functioning, and to investigate whether self-stigma would mediate the associations of social support with psychiatric symptoms and personal and social functioning among patients with SMI. METHODS: A total of 312 persons with SMI (schizophrenia and bipolar disorder) in their community recovery stage participated in the study. Social support, self-stigma, psychiatric symptoms, and personal and social functioning were evaluated at baseline. The follow-up assessment was conducted at 6 months with the baseline measures except for social support. Hierarchical linear regression and mediation analysis were performed. RESULTS: The results showed that baseline social support predicted decreases in stigma (ß = -.115, p = .029) and psychiatric symptoms (ß = -.193, p < .001), and increases in personal and social functioning (ß = .134, p = .008) over 6 months, after adjusting for relevant covariates. Stigma at 6 months partially mediated the association between baseline social support and 6-month psychiatric symptoms (indirect effect: ß = -.043, CI [-0.074, -0.018]). Stigma and psychiatric symptoms at 6 months together mediated the association between baseline social support and 6-month personal and social functioning (indirect effect: ß = .084, 95% CI [0.029, 0.143]). CONCLUSION: It is necessary to provide comprehensive social support services and stigma reduction interventions at the community level to improve the prognosis of SMI.

3.
Small ; : e2401264, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634249

RESUMO

Biological photo-responsive ion channels play important roles in the important metabolic processes of living beings. To mimic the unique functions of biological prototypes, the transition metal dichalcogenides, owing to their excellent mechanical, electrical, and optical properties, are already used for artificial intelligent channel constructions. However, there remain challenges to building artificial bio-semiconductor nanochannels with finely tuned band gaps for accurately simulating or regulating ion transport. Here, two well-designed peptides are employed for the WS2 nanosheets functionalization with the sequences of PFPFPFPFC and DFDFDFDFC (PFC and DFC; P: proline, D: aspartate, and F: phenylalanine) through cysteine (Cys, C) linker, and an asymmetric peptide-WS2 membrane (AP-WS2M) could be obtained via self-assembly of peptide-WS2 nanosheets. The AP-WS2M could realize the photo-driven anti-gradient ion transport and vis-light enhanced osmotic energy conversion by well-designed working patterns. The photo-driven ion transport mechanism stems from a built-in photovoltaic motive force with the help of formed type II band alignment between the PFC-WS2 and DFC-WS2. As a result, the ions would be driven across the channels of the membrane for different applications. The proposed system provides an effective solution for building photo-driven biomimetic 2D bio-semiconductor ion channels, which could be extensively applied in the fields of drug delivery, desalination, and energy conversion.

4.
J Am Chem Soc ; 146(19): 13191-13200, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38603609

RESUMO

Conventional solid ion channel systems relying on single one- or two-dimensional confined nanochannels enabled selective and ultrafast convective ion transport. However, due to intrinsic solid channel stacking, these systems often face pore-pore polarization and ion concentration blockage, thereby restricting their efficiency in macroscale ion transport. Here, we constructed a soft heterolayer-gel system that integrated an ion-selective hydrogel layer with a water-barrier organogel layer, achieving ultrahigh cation selectivity and flux and effectively providing high-efficiency gradient energy conversion on a macroscale order of magnitude. Specifically, the hydrogel layer featured an unconfined 3D network, where the fluctuations of highly hydrated polyelectrolyte chains driven by thermal dynamics enhanced cation selectivity and mitigated transfer energy barriers. Such chain fluctuation mechanisms facilitated ion-cluster internal transmission, thereby enhancing ion concentration hopping for more efficient ion-selective transport. Compared to the existing rigid nanochannel-based gradient energy conversion systems, such a heterogel-based power generator exhibited a record power density of 192.90 and 1.07 W/m2 at the square micrometer scale and square centimeter scale, respectively (under a 500-fold artificial solution). We anticipate that such heterolayer gels would be a promising candidate for energy separation and storage applications.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38679867

RESUMO

Ion channels play a crucial role in the transmembrane transport and signal transmission of substances. In animals, transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential melastatin 8 (TRPM8) serve as temperature-sensing units in sensory nerve endings. TRPV1 allows cells to sense heat, while TRPM8 enables them to detect cold, both serving to protect living organisms from harmful substances and environments. However, almost all studies on artificial nanochannels have mainly focused on TRPV1-like "forward nanochannels" thus far, which are incapable of "backward" responding to heat. So, we constructed an innovational TRPM8-inspired "retrorse nanochannel" through internal modification of poly(acrylamide-co-acrylonitrile) [P(AAm-co-AN)] with an upper critical solution temperature (UCST). Our results demonstrated that the internally modified nanochannels exhibited rapid, stable, and reversible heat-closing capability and converse temperature dependence within the typical temperature range of 25-40 °C. The biomimetic ion channel can effectively function as a facile, precise, and reversible thermal gate for controlling the transport of ions and substances. It also offers a promising microscopic technology for managing thermal effects on the substance, fluid, energy, and even signal delivery.

6.
Mater Horiz ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686603

RESUMO

Two-dimensional (2D) nanofluidic membranes are competitive candidates for osmotic energy harvesting and have been greatly developed. However, the use of diverse inherent characteristics of 2D nanosheets, such as electronic or optoelectronic properties, to achieve intelligent ion transport, still lacks sufficient exploration. Here, a cellulose nanofiber/molybdenum oxide (CNF/MoO3) heterogeneous nanofluidic membrane with high performance solar-osmotic energy conversion is reported, and how surface plasmon resonances (SPR) regulate selective cation transport is revealed. The SPR of amorphous MoO3 endows the heterogeneous nanofluidic membranes with tunable surface charge and good photothermal conversion. Through DFT calculations and finite element modeling, the regulation of electronic and optoelectronic properties on the surface of materials by SPR and the influence of surface charge density and temperature gradient on ion transport in nanofluidic membranes are demonstrated. By mixing 0.01/0.5 M NaCl solutions using SPR and photothermal effects, the power density can achieve a remarkable value of ≈13.24 W m-2, outperforming state-of-the-art 2D-based nanofluidic membranes. This work first reveals the regulation and mechanism of SPR on ion transport in nanofluidic membranes and systematically studies photon-electron-ion interactions in nanofluidic membranes, which could also provide a new viewpoint for promoting osmotic energy conversion.

7.
8.
Phys Chem Chem Phys ; 26(14): 11113-11125, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38530657

RESUMO

Electron transfer and its kinetics play a major role in the photocatalysis of metal/semiconductor systems. Using in situ photoconductances, in situ photoabsorption, and photoinduced spectroscopic techniques, the present research aimed to gain a deep insight into electron transfer pathways and their kinetics for Ag/TiO2 systems under sub-bandgap light illumination and gaseous conditions. The results revealed that electrons generated in TiO2 can transfer to Ag nanoparticles at fast rates, and plasmon-generated electrons in Ag nanoparticles can also transfer to TiO2. However, it was found that plasmon-assisted hot electron transfer efficiency is much lower than the electron transition from the valence band to the conduction band of TiO2. Rather than plasmonic active spots, the results showed that Ag nanoparticles acted as co-catalyst sites bridging electron transfer to recombination in a methanol-containing N2 atmosphere. As a result, photocatalytic isopropanol dehydrogenation was decreased. Independent of Ag decorations, it was also indicated that isopropanol dehydrogenation mainly occurred over TiO2 surfaces; therefore, Ag nanoparticles did not increase photocatalytic activities. Our results may provide a different viewpoint on sub-bandgap light-induced Ag/TiO2 photocatalysis under gaseous conditions; this may also facilitate the understanding of the photocatalytic mechanism of metal/semiconductor systems.

9.
ACS Cent Sci ; 10(2): 469-476, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38435527

RESUMO

With the rapid development of the lithium ion battery industry, emerging lithium (Li) enrichment in nature has attracted ever-growing attention due to the biotoxicity of high Li levels. To date, fast lithium ion (Li+) detection remains urgent but is limited by the selectivity, sensitivity, and stability of conventional technologies based on passive response processes. In nature, archaeal plasma membrane ion exchangers (NCLX_Mj) exhibit Li+-gated multi/monovalent ion transport behavior, activated by different stimuli. Inspired by NCLX_Mj, we design a pH-controlled biomimetic Li+-responsive solid-state nanochannel system for on-demand Li+ detection using 2-(2-hydroxyphenyl)benzoxazole (HPBO) units as Li+ recognition groups. Pristine HPBO is not reactive to Li+, whereas negatively charged HPBO enables specific Li+ coordination under alkaline conditions to decrease the ion exchange capacity of nanochannels. On-demand Li+ detection is achieved by monitoring the decline in currents, thereby ensuring precise and stable Li+ recognition (>0.1 mM) in the toxic range of Li+ concentration (>1.5 mM) for human beings. This work provides a new approach to constructing Li+ detection nanodevices and has potential for applications of Li-related industries and medical services.

10.
Chem Sci ; 15(12): 4538-4546, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516083

RESUMO

Oceans and salt lakes contain vast amounts of uranium. Uranium recovery from natural water not only copes with radioactive pollution in water but also can sustain the fuel supply for nuclear power. The adsorption-assisted electrochemical processes offer a promising route for efficient uranium extraction. However, competitive hydrogen evolution greatly reduces the extraction capacity and the stability of electrode materials with electrocatalytic activity. In this study, we got inspiration from the biomineralisation of marine bacteria under high salinity and biomimetically regulated the electrochemical process to avoid the undesired deposition of metal hydroxides. The uranium uptake capacity can be increased by more than 20% without extra energy input. In natural seawater, the designed membrane electrode exhibits an impressive extraction capacity of 48.04 mg-U per g-COF within 21 days (2.29 mg-U per g-COF per day). Furthermore, in salt lake brine with much higher salinity, the membrane can extract as much uranium as 75.72 mg-U per g-COF after 32 days (2.37 mg-U per g-COF per day). This study provides a general basis for the performance optimisation of uranium capture electrodes, which is beneficial for sustainable access to nuclear energy sources from natural water systems.

11.
Int J Surg ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38477158

RESUMO

Upper urinary tract stones are a common urological disease that can be treated by flexible ureteroscopy (FURS) through the natural urinary tract, in addition to extracorporeal shock wave lithotripsy (ESWL) and percutaneous nephrolithotomy (PCNL). The advantages of FURS are less trauma, faster recovery, and fewer complications, while its disadvantages include poor results of lithotripsy and stone extraction when dealing with larger stones, and prolonged operation time. Over the last two decades, the emergence of new technologies such as FURS combined with negative pressure suction, robot-assisted FURS, and artificially intelligent FURS, coupled with improvements in laser technology (the use of thulium fiber lasers (TFL) and the invention of single-use flexible ureteroscopes (su-fURS) suitable for primary level application, have significantly increased the global adoption of FURS. This surge in usage holds a promising future in clinical application, benefiting a growing number of patients with renal calculi. Accompanied by changes in technical concepts and therapeutic modalities, the scope of indications for FURS is broadening, positioning it as a potential primary choice for urolithiasis treatment in the future. This review outlines the progress in employing flexible ureteroscopy for the treatment of renal calculi in order to generate insights for further research.

12.
ACS Nano ; 18(12): 9071-9081, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38470249

RESUMO

Ion-sieve adsorbents are effective materials in practical applications for extracting liquid lithium. However, it is greatly suppressed in adsorption capacity and selectivity (Li/Mg) under natural near-neutral conditions of seawater or salt lakes, due to the interference of in situ released H+ and Mg2+ impurity. This paper proposes an adsorbent with a microenvironment-modulating function as a solution. The introduction of quaternary ammonium groups into the carrier accelerates the migration of H+, while preventing the diffusion of Mg2+ by electrostatic repulsion. Besides, it can also prestore OH-, effectively consuming the generated hydrogen ions in situ. Based on the rational design, the alkali consumption of the microenvironment-modulating strategy is dramatically reduced to 1/144 of the traditional alkali-adding method. Additionally, adsorption performance is significantly promoted under natural pH conditions, with a maximum 33 times higher separation factor (selectivity) and 4 times higher adsorption capacity than commercial ion-sieve adsorbents. This development indicates the feasibility of using microenvironment modulation for effective lithium extraction and inspires the development of next-generation high-performance adsorbents.

13.
Nano Lett ; 24(7): 2352-2359, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38345565

RESUMO

Ion-selective membrane has broad application in various fields, while the present solution-processed techniques can only prepare uniform membrane with microscale thickness. Herein, a high-quality polymer membrane with nanoscale thickness and uniformity is precisely prepared by controlling solution spreading and solvent evaporation stability/rate. With the arrayed capillaries, the stable spreading of polymer solution with volume of microliter induces the formation of solution film with micrometers thickness. Moreover, the fast increase of solution dynamic viscosity during solvent evaporation inhibits nonuniform Marangoni flow and capillary flow in solution film. Consequently, the uniform Nafion-Li membranes with ∼200 nm thickness are prepared, while their Li+ conductivity is 2 orders of magnitude higher than that of commercially Nafion-117 membrane. Taking lithium-sulfur battery as a model device, the cells (capacities of 8-10 mAh cm-2) can stably operate for 150 cycles at a S loading of 12 mg cm-2 and an electrolyte/sulfur ratio of ∼7.

14.
Chem Soc Rev ; 53(6): 2972-3001, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38345093

RESUMO

Nanofluidic channels with tailored ion transport dynamics are usually used as channels for ion transport, to enable high-performance ion regulation behaviors. The rational construction of nanofluidics and the introduction of external fields are of vital significance to the advancement and development of these ion transport properties. Focusing on the recent advances of nanofluidics, in this review, various dimensional nanomaterials and their derived homogeneous/heterogeneous nanofluidics are first briefly introduced. Then we discuss the basic principles and properties of ion transport in nanofluidics. As the major part of this review, we focus on recent progress in ion transport in nanofluidics regulated by external physical fields (electric field, light, heat, pressure, etc.) and chemical fields (pH, concentration gradient, chemical reaction, etc.), and reveal the advantages and ion regulation mechanisms of each type. Moreover, the representative applications of these nanofluidic channels in sensing, ionic devices, energy conversion, and other areas are summarized. Finally, the major challenges that need to be addressed in this research field and the future perspective of nanofluidics development and practical applications are briefly illustrated.

15.
Eur J Med Res ; 29(1): 39, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195659

RESUMO

BACKGROUND: Exosomes released from decidual stromal cells (DSC-exos) play a crucial role in facilitating the epithelial-mesenchymal transition (EMT) of trophoblasts and insufficient trophoblasts EMT are associated with URSA (unexplained recurrent spontaneous abortion). However, the mechanisms underlying DSC-exos inducing EMT is not completely understood. METHODS: DSC-exos of normal pregnant women (N-DSC-exos) and URSA patients (URSA-DSC-exos) were extracted and characterized. Characterization of the isolated DSC-exos was performed using with TEM (transmission electron microscopy), NTA (nanoparticle tracking analysis), and WB (western blot) techniques. Subsequently, these DSC-exos were co-cultured with trophoblasts cell lines (HTR-8/SVneo). The influence of both N-DSC-exos and URSA-DSC-exos on trophoblasts proliferation, invasion and migration, as well as on the expression of EMT-related proteins, was evaluated through a series of assays including CCK8 assays, wound healing assays, transwell assays, and western blot, respectively. Then rescue experiments were performed by ß-TrCP knockdown or ß-TrCP overexpressing trophoblasts with snail-siRNA transfection or ß-TrCP overexpressing Lentivirus infection, respectively. Finally, animal experiments were employed to explore the effect of N-DSC-exos on embryo absorption in mice. RESULTS: We found increased ß-TrCP expression in the villus of URSA patients when compared to the normal pregnant women, alongside reduction in the levels of both snail and N-cadherin within URSA patients. N-DSC-exos can promote the EMT of the trophoblast by inhibiting ß-TrCP-mediated ubiquitination and degradation of transcription factor snail. Moreover the capacity to promote EMT was found to be more potent in N-DSC-exos than URSA-DSC-exos. Down-regulation of snail or overexpression of ß-TrCP can reverse the effects of N-DSC-exos on trophoblast. Finally, in vivo experiment suggested that N-DSC-exos significantly reduced the embryo resorption rate of spontaneous abortion mouse model. CONCLUSIONS: Our findings indicate that URSA-DSC-exos caused insufficient migration and invasion of trophoblast because of disturbing of ß-TrCP-mediated ubiquitination and degradation of EMT transcription factor snail. Elucidating the underlying mechanism of this dysregulation may shed light on the novel pathways through which DSC-exos influence trophoblast function, thereby contributing to our understanding of their role in URSA.


Assuntos
Aborto Espontâneo , Exossomos , Animais , Feminino , Humanos , Camundongos , Gravidez , Proteínas Contendo Repetições de beta-Transducina , Western Blotting , Fatores de Transcrição
16.
Endocrine ; 83(2): 414-421, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37596455

RESUMO

PURPOSE: To investigate the impact of lateral lymph node metastasis in papillary thyroid microcarcinoma (PTMC). METHODS: 5241 PTMC patients with follow-up information were enrolled in the current study. These patients underwent primary surgery in our situation from January 1997 to December 2016. Additionally, a validation cohort consisting of 274 PTMC patients who underwent primary surgery between January 2020 and December 2021 was also included. Univariable and multivariate logistic analyses were conducted to identify the association between clinicopathologic features and lateral lymph node metastasis (LLNM). Kaplan-Meier survival curve analysis was used to calculate the disease-free survival (DFS) rate. The fitting curve was generated to identify the quantitative relationship between central lymph node metastases (CLNM) and LLNM. RESULTS: Of 5241 PTMC patients, cervical lymph node metastasis was detected in 1494 (28.5%) cases, including 1364 (26.0%) with CLNM only and 130 (2.5%) with LLNM. With a median follow-up time of 60 months (interquartile range [IQR], 44-81), recurrence was detected in 114 patients (2.2%). Multivariate Cox regression analyses showed that LNM was the only independent risk factor for recurrence, with HR values of 3.03 in CLNM and 11.14 in LLNM, respectively. Tumor diameter >0.5 cm (hazard ratio [HR]:1.80), multifocality (HR:2.59), bilaterality (HR:2.13), extrathyroidal invasion (HR:2.13), and CLNM (HR:5.11) were independent risk factors for LLNM. The prevalence of LLNM escalated significantly with increasing number of lymph node involvement in CLNM when stratified by the number of metastatic lymph nodes and trend was observed similarly in the validation cohort. The fitting curve showed that the incidence of LLNM could be as high as 20.7% when the number of CLNM ≥ 5. CONCLUSIONS: By analyzing a large database with follow-up information, our study provides evidence that LLNM is significantly correlated with tumor recurrence in patients with PTMC. Tumor size (>0.5 cm), multifocality, bilaterality, extrathyroidal extension (ETE) and CLNM are independent risk factors for LLNM.


Assuntos
Carcinoma Papilar , Recidiva Local de Neoplasia , Neoplasias da Glândula Tireoide , Humanos , Metástase Linfática/patologia , Seguimentos , Estudos Retrospectivos , Recidiva Local de Neoplasia/patologia , Neoplasias da Glândula Tireoide/patologia , Linfonodos/patologia , Fatores de Risco
17.
Angew Chem Int Ed Engl ; 63(5): e202315087, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38087471

RESUMO

The reaction rate bottleneck during interconversion between insulating S8 (S) and Li2 S fundamentally leads to incomplete conversion and restricted lifespan of Li-S battery, especially under high S loading and lean electrolyte conditions. Herein, we demonstrate a new catalytic chemistry: soluble semiquinone, 2-tertbutyl-semianthraquinone lithium (Li+ TBAQ⋅- ), as both e- /Li+ donor and acceptor for simultaneous S reduction and Li2 S oxidation. The efficient activation of S and Li2 S by Li+ TBAQ⋅- in the initial discharging/charging state maximizes the amount of soluble lithium polysulfide, thereby substantially improve the rate of solid-liquid-solid reaction by promoting long-range electron transfer. With in situ Raman spectra and theoretical calculations, we reveal that the activation of S/Li2 S is the rate-limiting step for effective S utilization under high S loading and low E/S ratio. Beyond that, the S activation ratio is firstly proposed as an accurate indicator to quantitatively evaluate the reaction rate. As a result, the Li-S batteries with Li+ TBAQ⋅- deliver superior cycling performance and over 5 times higher S utilization ratio at high S loading of 7.0 mg cm-2 and a current rate of 1 C compared to those without Li+ TBAQ⋅- . We hope this study contributes to the fundamental understanding of S redox chemical and inspires the design of efficient catalysis for advanced Li-S batteries.

18.
Adv Mater ; 36(6): e2308639, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37923399

RESUMO

The quasi-solid electrolytes (QSEs) attract extensive attention due to their improved ion transport properties and high stability, which is synergistically based on tunable functional groups and confined solvent molecules among the polymetric networks. However, the trade-off effect between the polymer content and ionic conductivity exists in QSEs, limiting their rate performance. In this work, the epitaxial polymerization strategy is used to build the gradient hydrogel networks (GHNs) covalently fixed on zinc anode. Then, it is revealed that the asymmetric distribution of negative charges benefits GHNs with fast and selective ionic transport properties, realizing a higher Zn2+ transference number of 0.65 than that (0.52) for homogeneous hydrogel networks (HHNs) with the same polymer content. Meanwhile, the high-density networks formed at Zn/GHNs interface can efficiently immobilize free water molecules and homogenize the Zn2+ flux, greatly inhibiting the water-involved parasitic reactions and dendrite growth. Thus, the GHNs enable dendrite-free stripping/plating over 1000 h at 8 mA cm-2 and 1 mAh cm-2 in a Zn||Zn symmetric cell, as well as the evidently prolonged cycles in various full cells. This work will shed light on asymmetric engineering of ion transport channels in advanced quasi-solid battery systems to achieve high energy and safety.

19.
J Phys Chem Lett ; 14(51): 11603-11609, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38100090

RESUMO

High-efficiency excitation of a molecular beam is critical for investigating state-selected chemistry. However, achieving vibrational excitation of the entire beam for Raman-active molecules such as H2 proves extremely challenging, primarily because laser pulses are much shorter than the molecular beam. In this study, we achieve a total excitation efficiency of over 20% by employing stimulated Raman pumping (SRP) in a slow, narrow-pulsed molecular beam. Through optimizing the intensity and spot shape of the SRP lasers, we attain saturated excitation within the laser crossing region. Furthermore, by reducing the beam velocity and narrowing the beam pulse using a cold valve and a fast chopper, we significantly enhance the total excitation yield. COMSOL simulation and a newly developed model reveal that a critical velocity allows the chopper to block unexcited molecules and reserve most of the excited ones from the beam, resulting in the highest overall excitation yield. This innovative setup opens new possibilities for state-selected experiments in surface science and ion-molecule reaction dynamics, particularly involving weak transitions and pulsed lasers.

20.
Science ; 382(6670): 559-565, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37917701

RESUMO

Currently, electronics and iontronics in abiotic-biotic systems can only use electrons and single-species ions as unitary signal carriers. Thus, a mechanism of gating transmission for multiple biosignals in such devices is needed to match and modulate complex aqueous-phase biological systems. Here we report the use of cascade-heterogated biphasic gel iontronics to achieve diverse electronic-to-multi-ionic signal transmission. The cascade-heterogated property determined the transfer free energy barriers experienced by ions and ionic hydration-dehydration states under an electric potential field, fundamentally enhancing the distinction of cross-interface transmission between different ions by several orders of magnitude. Such heterogated or chemical-heterogated iontronics with programmable features can be coupled with multi-ion cross-interface mobilities for hierarchical and selective cross-stage signal transmission. We expect that such iontronics would be ideal candidates for a variety of biotechnology applications.


Assuntos
Eletrônica , Elétrons , Íons , Água , Biotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...