Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569989

RESUMO

Carbon-fiber-reinforced polymer (CFRP) composites are widely used in industries such as aerospace due to their lightweight nature and high strength. However, weak interfacial bonding strength is one of the main problems of resin-based composites. In this study, a prepreg was prepared by melt mixing. By dispersing nanoreinforcement particles in the resin, the interlaminar shear strength of the CFRP was increased by approximately 23.6%. When only 0.5 wt% multiwalled carbon nanotube (MWCNT) was used for reinforcement, scanning electron microscopy (SEM) micrographs showed that cracks were hindered by the MWCNTs during propagation, causing crack deflection. At the same time, the mechanism of MWCNTs pulling out increased the energy required for crack propagation. When only 0.5 wt% graphene oxide (GO) was added, the reinforcement effect was inferior to that of using the same amount of MWCNTs. The laminar structure formed by GO and the resin matrix adhered to the carbon fiber surface, reducing the degree of destruction of the resin matrix, but its hindering effect on crack propagation was weak. When 0.5 wt% of MWCNT and GO mixture was added, the interlayer shear strength increased from 55.6 MPa in the blank group to 68.7 MPa. The laminar structure of GO provided a platform for the MWCNTs to form a mesh structure inside its matrix. At the same time, the tubular structure of the MWCNTs inhibited the stacking of GO, providing better dispersion and forming a synergistic enhancement effect.

2.
Materials (Basel) ; 16(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569994

RESUMO

To address the issues of low detection accuracy, slow detection speed, high missed detection rate, and high false detection rate in the detection of surface defects on pre-impregnated composite materials during the automated tape laying and winding process, an improved YOLOv5 (You Only Look Once version 5) algorithm model was proposed to achieve the high-precision, real-time detection of surface defects. By leveraging this improvement, the necessity for frequent manual interventions, inspection interventions, and subsequent rework during the automated lay-up process of composite materials can be significantly reduced. Firstly, to improve the detection accuracy, an attention mechanism called "CA (coordinate attention)" was introduced to enhance the feature extraction ability, and a Separate CA structure was used to improve the detection speed. Secondly, we used an improved loss function "SIoU (SCYLLA-Intersection over Union) loss" to replace the original "CIoU (Complete-Intersection over Union) loss", which introduced an angle loss as a penalty term to consider the directional factor and improve the stability of the target box regression. Finally, Soft-SIoU-NMS was used to replace the original NMS (non-maximum suppression) of YOLOv5 to improve the detection of overlapping defects. The results showed that the improved model had a good detection performance for surface defects on pre-impregnated composite materials during the automated tape laying and winding process. The FPS (frames per second) increased from 66.7 to 72.1, and the mAP (mean average precision) of the test set increased from 92.6% to 97.2%. These improvements ensured that the detection accuracy, as measured by the mAP, surpassed 95%, while maintaining a detection speed of over 70 FPS, thereby meeting the requirements for real-time online detection.

3.
Polymers (Basel) ; 15(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37050244

RESUMO

Bonding is one of the main forms of composite bonding. In order to investigate the effect of low-temperature plasma surface treatment on the bonding properties of carbon fiber-reinforced epoxy resin composites (CF/EP), a single-lap joint of CF/EP was prepared. The surface of the CF/EP was treated with atmospheric pressure "low-temperature plasma spray" equipment, and the tensile shear strength, surface morphology, surface contact angle and surface chemical composition of the CF/EP before and after plasma treatment were characterized. Finally, the samples were treated with traditional sandblasting, compared and analyzed. The results show that the effect of low-temperature plasma surface treatment on CF/EP joints is better than that of traditional sandblasting treatment. After low-temperature plasma surface treatment, the tensile shear strength of the CF/EP single-lap joint increased by 119.59% at most, and the failure form of the joint changed from untreated interface failure to mixed failure dominated by cohesion failure. Plasma can etch the surface of composite materials, the mechanical interlock between the carbon fiber and glue is enhanced and the bonding performance of the composite is improved. In addition, after low-temperature plasma surface treatment, the introduction of a large number of oxygen-containing active groups such as C-O and C=O can increase the surface free energy, reduce the contact angle and improve the surface activity and wettability of the composites. However, too long a treatment time will lead to excessive plasma etching of carbon fibers, thus weakening the active effect of the oxygen-containing active groups on the surface of the composites, and the surface wettability is no longer improved, but the adhesive properties of CF/EP are reduced. This paper plays a guiding role in the bonding technology of composite materials.

4.
Phys Rev Lett ; 126(5): 057601, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33605764

RESUMO

Ferroelectric tunnel junctions (FTJs), which consist of two metal electrodes separated by a thin ferroelectric barrier, have recently aroused significant interest for technological applications as nanoscale resistive switching devices. So far, most existing FTJs have been based on perovskite-oxide barrier layers. The recent discovery of the two-dimensional (2D) van der Waals ferroelectric materials opens a new route to realize tunnel junctions with new functionalities and nm-scale dimensions. Because of the weak coupling between the atomic layers in these materials, the relative dipole alignment between them can be controlled by applied voltage. This allows transitions between ferroelectric and antiferroelectric orderings, resulting in significant changes of the electronic structure. Here, we propose to realize 2D antiferroelectric tunnel junctions (AFTJs), which exploit this new functionality, based on bilayer In_{2}X_{3} (X=S, Se, Te) barriers and different 2D electrodes. Using first-principles density functional theory calculations, we demonstrate that the In_{2}X_{3} bilayers exhibit stable ferroelectric and antiferroelectric states separated by sizable energy barriers, thus supporting a nonvolatile switching between these states. Using quantum-mechanical modeling of the electronic transport, we explore in-plane and out-of-plane tunneling across the In_{2}S_{3} van der Waals bilayers, and predict giant tunneling electroresistance effects and multiple nonvolatile resistance states driven by ferroelectric-antiferroelectric order transitions. Our proposal opens a new route to realize nanoscale memory devices with ultrahigh storage density using 2D AFTJs.

5.
Hortic Res ; 6: 9, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30622722

RESUMO

A genome-wide association study (GWAS) was applied to detect single nucleotide polymorphisms (SNPs) significantly associated with resistance to Heterodera glycines (HG) also known as the soybean cyst nematode (SCN) in the core collection of common bean, Phaseolus vulgaris. There were 84,416 SNPs identified in 363 common bean accessions. GWAS identified SNPs on chromosome (Chr) 1 that were significantly associated with resistance to HG type 2.5.7. These SNPs were in linkage disequilibrium with a gene cluster orthologous to the three genes at the Rhg1 locus in soybean. A novel signal on Chr 7 was detected and associated with resistance to HG type 1.2.3.5.6.7. Genomic predictions (GPs) for resistance to these two SCN HG types in common bean achieved prediction accuracy of 0.52 and 0.41, respectively. Our study generated a high-quality SNP panel for 363 common bean accessions and demonstrated that both GWAS and GP were effective strategies to understand the genetic architecture of SCN resistance in common bean.

6.
PLoS One ; 10(10): e0140756, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26479258

RESUMO

Regardless of whether a leaf is simple or compound, the mechanism underlying its development will give rise to a full comprehension of plant morphogenesis. The role of Argonaute1 (AGO1) in the development of simple leaves has been established, but its role in the development of compound leaves remains to be characterized. In this paper, a virus-induced gene silencing (VIGS) strategy was used to dramatically down-regulate the expression of AGO1 ortholog in tomatoes, a model plant for research into compound leaves. AGO1-silenced tomato compound leaves exhibited morphological defects of leaf adaxial-abaxial and trichome development. Analysis of global gene expression profiles indicated that the silencing of AGO1 in tomato compound leaf caused significant changes in the expression of several critical genes, including Auxin Response Factor 4 (ARF4) and Non-expressor of PR5 (NPR5), which were involved in adaxial-abaxial formation and IAA15 that was found to contribute to growth of trichomes as well as Gibberellic Acid Insensitive (GAI) which participated in hormone regulation. Collectively, these results shed light on the complicated mechanism by which AGO1 regulates compound leaf development.


Assuntos
Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Análise de Sequência de RNA , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Solanum lycopersicum/anatomia & histologia , Proteínas de Plantas/genética , Tricomas/crescimento & desenvolvimento
7.
Cell Biosci ; 5: 59, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26500759

RESUMO

Tens of thousands of long non-coding RNAs (lncRNAs) have been discovered in eukarya, but their functions are largely unknown. Fortunately, lncRNA-protein interactions may offer details of how lncRNAs play important roles in various biological processes, thus identifying proteins associated with lncRNA is critical. Here we review progress of molecular archetypes that lncRNAs execute as guides, scaffolds, or decoys for protein, focusing on advantages, shortcomings and applications of various conventional and emerging technologies to probe lncRNAs and protein interactions, including protein-centric biochemistry approaches such as nRIP and CLIP, and RNA-centric biochemistry approaches such as ChIRP, CHART and RAP. Overall, this review provides strategies for probing interactions between lncRNAs and protein.

8.
J Exp Bot ; 66(15): 4483-95, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25948705

RESUMO

Recently, long non-coding RNAs (lncRNAs) have been shown to play critical regulatory roles in model plants, such as Arabidopsis, rice, and maize. However, the presence of lncRNAs and how they function in fleshy fruit ripening are still largely unknown because fleshy fruit ripening is not present in the above model plants. Tomato is the model system for fruit ripening studies due to its dramatic ripening process. To investigate further the role of lncRNAs in fruit ripening, it is necessary and urgent to discover and identify novel lncRNAs and understand the function of lncRNAs in tomato fruit ripening. Here it is reported that 3679 lncRNAs were discovered from wild-type tomato and ripening mutant fruit. The lncRNAs are transcribed from all tomato chromosomes, 85.1% of which came from intergenic regions. Tomato lncRNAs are shorter and have fewer exons than protein-coding genes, a situation reminiscent of lncRNAs from other model plants. It was also observed that 490 lncRNAs were significantly up-regulated in ripening mutant fruits, and 187 lncRNAs were down-regulated, indicating that lncRNAs could be involved in the regulation of fruit ripening. In line with this, silencing of two novel tomato intergenic lncRNAs, lncRNA1459 and lncRNA1840, resulted in an obvious delay of ripening of wild-type fruit. Overall, the results indicated that lncRNAs might be essential regulators of tomato fruit ripening, which sheds new light on the regulation of fruit ripening.


Assuntos
Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , RNA Longo não Codificante/genética , RNA de Plantas/genética , Solanum lycopersicum/genética , Frutas/genética , Frutas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , RNA Longo não Codificante/metabolismo , RNA de Plantas/metabolismo , Análise de Sequência de RNA
9.
Bio Protoc ; 5(8)2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27430007

RESUMO

microRNAs (miRNAs) are small non-coding RNAs, regulating most if not all, biological processes in eukaryotic organisms. miRNAs are initially processed from primary transcripts (pri-miRNAs) to produce miRNA precursors (pre-miRNAs), that are further processed into miRNA and its complementary strands (miRNA/*). In Arabidopsis, and possibly other plants, the processing from pri-miRNAs to pre-miRNAs and from pre-miRNAs to miRNA/* are both implemented through Dicer-like 1 (DCL1) complexes. Recently, we demonstrated isolation of DCL1 complexes of unprecedented quality from in planta. We further successfully reconstituted DCL1 cleavage assays in vitro that were able to fully recapitulate in vivo miRNA biogenesis. Here we provide a detailed protocol of DCL1 reconstitution assays. The protocol comprises three major parts (Figure 1): 1) Preparation of pri- and pre-miRNA transcripts (Procedures A-C); 2) Purification of the recombinant Arabidopsis DCL1 machinery from Nicotiana benthamiana (N. benthamiana) through immunoprecipitation (IP) (Procedures D and E); and 3) in vitro processing of radioisotope-labeled pri- or pre-miRNAs using the isolated DCL1 complexes (Procedure F). It is our desire that the protocol be a powerful tool for the RNAi community to study mechanistic issues or to develop RNA silencing technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA