Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 38, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167819

RESUMO

The fast-growing terahertz technologies require high-performance terahertz absorber for suppressing electromagnetic interference. Since the dissipation mechanism in terahertz band usually focuses on electronic conduction loss, almost all terahertz absorbers are constructed with electronically conducting materials being opaque, which limits their applications in scenarios requiring high visible transmittance. Here, we demonstrate a transparent terahertz absorber based on permittivity-gradient elastomer-encapsulated-organohydrogel. Our organohydrogel-based terahertz absorber exhibits a high absorbing property (average reflection loss of 49.03 dB) in 0.5-4.5 THz band with a thin thickness of 700 µm and a high average visible transmittance of 85.51%. The terahertz absorbing mechanism mainly derives from the ionic conduction loss of the polar liquid in organohydrogel. Besides, the hydrophobic and adhesive elastomer coating endows this terahertz absorber high absorbing stability and interfacial adhesivity. This work paves a viable way to designing transparent terahertz absorbers.

2.
Phys Chem Chem Phys ; 26(5): 4403-4411, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38240016

RESUMO

Nonlinear optical (NLO) crystals based on oxides typically have wide bandgaps and large laser damage thresholds (LDTs), which are important for generating high-power and continuous terahertz radiation. Recently, a new family of NLO materials α-A2BB'O6 including Li2TiTeO6 (LTTO) with a strong second harmonic generation (SHG) efficiency of 26 × KH2PO4 (KDP) and a large LDT of 550 MW cm-2 were reported. Herein, we systematically study the electronic structures and NLO properties of α-A2BB'O6 (A = Li, Na, K; B = Ti, Zr, Hf; B' = Se, Te) to explore the relationship between the structure and SHG coefficient. First, 15 members of the A2BB'O6 family are demonstrated to be highly stable and NLO materials, excluding K2TiTeO6, K2TiSeO6 and K2ZrSeO6. Then, the electronic band structure, dipole moment and distortion of BO6/B'O6 octahedrons, SHG coefficient and terahertz absorption spectrum are calculated comprehensively with the element variation of A-site, B-site and B'-site. Finally, the magnitude of the SHG coefficient is found to be directly proportional to the value of total dipole moment and distortion, and inversely proportional to the bandgap value. Most importantly, among the A2BB'O6 materials, K2HfSeO6 shows the smallest direct bandgap of 2.99 eV, the largest SHG coefficient d33 of about 5 × LTTO and low terahertz absorbance from 0.1 to 9 THz. Our results provide new NLO crystals that may have potential application in terahertz radiation sources and other nonlinear electronics.

3.
Small ; 20(16): e2306200, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38037679

RESUMO

The transport properties of charge carriers in MXene, a promising material, have been studied using terahertz time-domain spectroscopy (THz-TDS) to examine its potential applications in optical and electronic devices. However, previous studies have been limited by narrow frequency ranges, which have hindered the understanding of the intrinsic mechanisms of carrier transport in MXenes. To address this issue, ultrabroadband THz-TDS with frequencies of up to 15 THz to investigate the complex photoconductances of MXene (Ti3C2Tx) films with different thicknesses are employed. The findings indicate that the electronic localization is substrate-dependent, and this effect decreases with an increase in the number of layers. This is attributed to the screening effect of the high carrier density in Ti3C2Tx. Additionally, the layer-independent photocarrier relaxations revealed by optical pump THz probe spectroscopy (OPTP) provide evidence of the carrier heating-induced screening effect. These results are significant for practical applications in both scientific research and various industries.

4.
Adv Sci (Weinh) ; 11(3): e2305898, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37997181

RESUMO

Terahertz (THz) technologies provide opportunities ranging from calibration targets for satellites and telescopes to communication devices and biomedical imaging systems. A main component will be broadband THz absorbers with switchability. However, optically switchable materials in THz are scarce and their modulation is mostly available at narrow bandwidths. Realizing materials with large and broadband modulation in absorption or transmission forms a critical challenge. This study demonstrates that conducting polymer-cellulose aerogels can provide modulation of broadband THz light with large modulation range from ≈ 13% to 91% absolute transmission, while maintaining specular reflection loss < -30 dB. The exceptional THz modulation is associated with the anomalous optical conductivity peak of conducting polymers, which enhances the absorption in its oxidized state. The study also demonstrates the possibility to reduce the surface hydrophilicity by simple chemical modifications, and shows that broadband absorption of the aerogels at optical frequencies enables de-frosting by solar-induced heating. These low-cost, aqueous solution-processable, sustainable, and bio-friendly aerogels may find use in next-generation intelligent THz devices.

5.
ACS Appl Mater Interfaces ; 15(51): 59600-59609, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38091576

RESUMO

High efficiency, high frequency, low error, and low latency of wavefront modulation are challenges that must be addressed simultaneously in 5G/6G communication systems. In order to cope with these challenges, novel Li2Mg2-xZnxMo3O12 (x = 0.00-0.08) ceramics are prepared by a solid-state reaction method. The microwave dielectric properties (εr = 8.7, Q × f = 61,312 GHz, τf = -59.1 ppm/°C) and terahertz transmission properties (εr1 = 8.3, tanδ1 = 0.00908, Tamplitude = 0.673, Δphase = 27.65°) of this ceramic (x = 0.06, 625 °C) are effectively enhanced by Zn2+. The chemical compatibility between this ceramic and the Al electrode is demonstrated. The reflection amplitude of this ceramic combined with the Al electrode at 0.5 THz is revealed, and the error between simulation and experiment is only 0.06. A terahertz reflective device for wavefront modulation is designed and demonstrated by using this ceramic and Al electrode. This device can deflect the wavefront of cross-polarized waves and has a certain isolation effect on co-polarized waves. This work accelerates the development of dielectric ceramics and ultralow temperature cofired ceramics technology in the terahertz field.

6.
Opt Express ; 31(24): 39557-39567, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38041274

RESUMO

We proposed and demonstrated a metasurface based terahertz polarizer consisting of an optically responsive nanocomposite and a flexible base body, which fulfilled the function of linear-to-circular polarization conversion in transmission mode. Meanwhile, as the dynamic and stretchable materials enable the active manipulation of conversion points, evident frequency shifts for circular polarization transformation were discovered by applying laser irradiation and tension. Hence the modulation of conversion points covered a broadband with combination of those two external excitations. This THz polarization convertor may find its applications in polarization controls and beam steering, which also provides a low-cost and large-scale manufacturable method to achieve versatile active THz devices.

7.
Opt Express ; 31(5): 8650-8667, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859976

RESUMO

Multispectral stealth technology including terahertz (THz) band will play an increasingly important role in modern military and civil applications. Here, based on the concept of modularization design, two kinds of flexible and transparent metadevices were fabricated for multispectral stealth, covering the visible, infrared (IR), THz, and microwave bands. First, three basic functional blocks for IR, THz, and microwave stealth are designed and fabricated by using flexible and transparent films. And then, via modular assembling, that is, by adding or removing some stealth functional blocks or constituent layers, two multispectral stealth metadevices are readily achieved. Metadevice 1 exhibits THz-microwave dual-band broadband absorption, with average measured absorptivity of 85% in 0.3-1.2 THz and higher than 90% in 9.1-25.1 GHz, suitable for THz-microwave bi-stealth. Metadevice 2 is for IR and microwave bi-stealth, with measured absorptivity higher than 90% in 9.7-27.3 GHz and low emissivity around 0.31 in 8-14 µm. Both metadevices are optically transparent and able to maintain good stealth ability under curved and conformal conditions. Our work offers an alternative approach for designing and fabricating flexible transparent metadevices for multispectral stealth, especially for applications in nonplanar surfaces.

8.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 79(Pt 2): 157-163, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36920874

RESUMO

Ultra-thin rare earth iron garnet (RIG) films with a narrow ferromagnetic resonance (FMR) line width and a low damping factor have attracted a great deal of attention for microwave and spintronic applications. In this work, 200 nm Y3(GaAlFe)5O12 garnet (GaAl-YIG) films were prepared on gadolinium gallium garnet (GGG) substrates by liquid-phase epitaxy (LPE) with low saturation magnetization. The microstructural properties, chemical composition, and magnetostatic and dynamic magnetization characteristics of the films are discussed in detail. According to the structural analysis, these films exhibit a low surface roughness of less than 0.5 nm. The GaAl-YIG films show an obvious temperature dependence of lattice parameter and strain state, and the film's parameter is perfectly matched with that of the GGG substrate at 810°C. There is a clear variation in the Pb level, which brings about a gradual enhancement of the coercivity and a diminution of the squareness ratio of magnetic hysteresis loops as the growth temperature is reduced. Slight changes in surface roughness, strain condition and content of Pb induce the FMR line width and damping factor to vary on a small scale. The line width is less than 10.17 Oe at 12 GHz and the damping factor is of the order of 10-4. All these properties demonstrate that these ultra-thin GaAl-YIG films are of benefit for the development of devices operated at lower frequencies and in lower fields.

9.
Small Methods ; 7(3): e2201493, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642856

RESUMO

The prospect of graphene-based shielding materials in the form of fillers is limited by the cumbersome preparation of graphene. Herein, defect-tunable porous graphene prepared by carbothermal shock using low-value sucrose as a precursor is proposed as an effective shielding filler. The resultant porous graphene exhibits 32.5 dB shielding efficiency (SE) and 2.5-18 GHz effective bandwidth at a mass loading of 20 wt%, competing with the shielding performance of graphene fillers prepared by other methods. Particularly, defect-rich graphene synthesized by increasing voltage and prolonging time shows increased electromagnetic (EM) wave absorption, echoing the current concept of green shielding. In addition, the strategy of controlling the discharge conditions to improve the absorption by the shield is developed in the terahertz band. The average SE and reflection loss of the samples in the THz band (0.2-1.2 THz) exhibit 40.7 and 15.9 dB at filler loading of 5 wt%, respectively, achieving effective shielding and absorption of THz waves. This work paves a new way for low-cost preparation of graphene for EM interference shielding fillers. Meanwhile, it supplies a reference for the shielding research of the upcoming applications integrating multiple EM bands (such as sixth-generation based integrated sensing and communication).

10.
ACS Appl Mater Interfaces ; 14(51): 57008-57015, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36516474

RESUMO

MXene aerogels with a three-dimensional (3D) network structure have attracted increasing attention for lightweight electromagnetic wave absorbers. It is intriguing to expand their absorption band, i.e., to the booming terahertz (THz) region, and explore multifunctionality. Herein, we assemble MXene (Ti3C2Tx)-based hybrid aerogels into an aligned lamellar architecture using a bidirectional freezing technique. With air pore size and lamellar layer spacing comparable to THz wavelengths, high porosity of the aerogels allows nearly isotropic absorption of 99% and electromagnetic interference (EMI) shielding effectiveness with a remarkable value of 57.5 dB, in the ultrabroad bandwidth ranging from 0.5 to 3.0 THz. Simultaneous, strain-sensing response reflects the macroscopic anisotropy of the network structure of the aerogels. The improved sensitivity is measured for the out-of-lamellar layer plane under 0-30% strain. The corresponding long-term stability and durability persist over 120 stretching-releasing cycles. Our findings thus not only expand multiple functions of MXene in an anisotropic 3D macroscopic form but also clarify its nearly isotropic absorption in the THz band.

11.
Opt Express ; 30(16): 29379-29387, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36299113

RESUMO

Two terahertz metamaterials were joined by a conductivity variable VO2 patch to obtain a metamaterial dimer. By applying voltage or heat to the VO2 patches, active modulation of terahertz wave could be achieved. A cut-wire metamaterial was placed adjacent to the VO2 joined dimer to affect its electromagnetic response. It was found that the cut wire could heavily impact the resonance mode of the VO2 joined dimer, which gives dual resonance dips in transmission spectrum for both insulating and conducting states of VO2 patches. As a result, by tuning the conductivity of VO2, active dual band phase modulation could be achieved with high transmission window by this dimer-cut wire coupling system.

12.
Nat Commun ; 13(1): 5551, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138027

RESUMO

Although Ti3C2Tx MXene is a promising material for many applications such as catalysis, energy storage, electromagnetic interference shielding due to its metallic conductivity and high processability, it's poor resistance to oxidation at high temperatures makes its application under harsh environments challenging. Here, we report an air-stable Ti3C2Tx based composite with extracted bentonite (EB) nanosheets. In this case, oxygen molecules are shown to be preferentially adsorbed on EB. The saturated adsorption of oxygen on EB further inhibits more oxygen molecules to be adsorbed on the surface of Ti3C2Tx due to the weakened p-d orbital hybridization between adsorbed O2 and Ti3C2Tx, which is induced by the Ti3C2Tx/EB interface coupling. As a result, the composite is capable of tolerating high annealing temperatures (above 400 °C for several hours) both in air or humid environment, indicating highly improved antioxidation properties in harsh condition. The above finding is shown to be independent on the termination ratio of Ti3C2Tx obtained through different synthesis routes. Utilized as terahertz shielding materials, the composite retains its shielding ability after high-temperature treatment even up to 600 °C, while pristine Ti3C2Tx is completely oxidized with no terahertz shielding ability. Joule heating and thermal cycling performance are also demonstrated.

13.
Micromachines (Basel) ; 13(5)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35630153

RESUMO

In the world of terahertz bands, terahertz beam deflection has gradually attracted substantial attention, due to its great significance in wireless communications, high-resolution imaging and radar applications. In this paper, a low-reflection and fast-fabricated terahertz beam deflection device has been realized by utilizing graphene oxide paper. Using laser direct writing technology, graphene oxide has been patterned as a specific sample. The thickness of the graphene oxide-based terahertz devices is around 15-20 µm, and the processing takes only a few seconds. The experimental results show that the beam from this device can achieve 5.7° and 10.2° deflection at 340 GHz, while the reflection is 10%, which is only 1/5 of that of existing conventional devices. The proposed device with excellent performance can be quickly manufactured and applied in the fields of terahertz imaging, communication, and perception, enabling the application of terahertz technology.

14.
Opt Express ; 30(9): 14232-14242, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35473171

RESUMO

Chiral metasurfaces are widely used in imaging and biosensing due to their powerful light field control capabilities. Most of the work is devoted to achieving the goals of chirality enhancement and tunability, but lacks consideration of design complexity, loss, cost, and multi-band operation. In order to alleviate this situation, we propose a pair of dual-frequency giant chiral structures based on all-silicon, which can achieve excellent and opposite spin-selective transmission around 1.09 THz and 1.65 THz. The giant chirality derives from the in-plane electric and magnetic dipole moments excited in different degrees. Theoretically, the maximum circular dichroism at the two frequencies are both as high as 0.34, and the coverage bandwidths of the two giant chirality are 85.5 GHz and 41.4 GHz, respectively. The experimental results are in good agreement with the simulation results. Based on the dual-band giant chiral patterns, the terahertz near-field imaging of different Chinese character images is demonstrated at two frequencies. The frequency-undifferentiated characteristics, good intensity contrast and three-dimensional imaging information are shown by the results. This work provides new ideas for the design of terahertz devices with simple structure and multi-functions, which are expected to be applied in the field of terahertz imaging or multi-channel communication.

15.
Opt Express ; 30(3): 3645-3653, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35209618

RESUMO

Metamaterials have shown great potential for modulation on the amplitude, phase and polarization of the terahertz wave. Here vacancies were introduced into the metamaterial arrays to tune the mutual interaction between the constituent resonators, which could heavily affect the electromagnetic response of the whole metamaterial arrays. We show that the introduced vacancies in the metamaterial arrays can effectively affect the resonance mode of the metamaterial arrays. Based upon the vacancy mediated coupling, a silicon-metal hybrid metamaterial arrays were designed to achieve active modulation of propagating terahertz waves.

16.
Opt Express ; 29(15): 23540-23548, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34614618

RESUMO

We report the magneto-optical Faraday response of bismuth-gadolinium-substituted rare-earth iron garnet at terahertz frequencies ranging from 100 GHz to 1.2 THz. The maximum transmittance of ±45° component is about 60% near the frequency point of 0.63 THz. When the external magnetic field change from -100 mT to +100 mT, the Faraday rotation angle is between -6° and +7.5°. The overall change of ellipticity is relatively small. The maximum value of the Verdet constant is about 260 °/mm/T at 0.1 THz and then gradually decreases to 80 °/mm/T at 1.2 THz. Within the considered frequency range, the thick film exhibits magnetically tunable, non-reciprocal characters and a strong magneto-optical effect within a small external magnetic field at room temperature, which will be widely used for the terahertz isolators, circulators, nonreciprocal phase shifters, and magneto-optical modulators.

17.
ACS Nano ; 15(8): 13646-13652, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34339190

RESUMO

With the development of terahertz (THz) technology, there is a booming demand of THz shielding/absorption materials to avoid electromagnetic interference (EMI) or pollution. Paints that can be fast solidified to form a film and stably adherent on arbitrary substrates are especially desired for the shielding/absorption applications. Recently, MXenes with high electron conductivity and hydrophilicity have attracted a great interest for EMI shielding. Here, we demonstrate a copolymer-polyacrylic latex (PAL) based MXene waterborne paint (MWP), which not only has strong THz EMI shielding/absorption efficiency but also can easily adhere onto various substrates that are commonly used in the THz band. The viscosity of MWP can be tuned by adjusting the colloidal and viscous forces, and the cyano group in PAL provides a strong intermolecular polar interaction between MWP and the substrate. As a result, a 38.3-µm-thick MWP on quartz exhibits EMI shielding value of 64.9 dB, and an excellent reflection-loss of 32.8 dB is obtained on MWP coated sponge foam. This substrate-independent MWP provides a simple and efficient way to achieving high-performance THz shielding/absorption.

18.
Opt Express ; 29(6): 8914-8925, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33820332

RESUMO

For a Si-based all-optical spatial terahertz modulator (STM), an enhanced modulation efficiency under low illumination density would be of great significance to exploit the competence of THz technology in real-world applications. We presented here an implementation of such a device by microtexturing and passivating the Si surface, forming a truncated pyramidal array (TPA). This TPA structure with SiO2 passivating coatings not only decreases light reflectance and expands the active area for THz modulation but also remarkably increases the photogenerated carrier lifetime. These 3-fold benefits render Si-TPA superior to bare-Si with respect to the achievable modulation efficiency, especially at low irradiation power. Furthermore such a Si-TPA device is also more applicable than its counterpart that is only passivated by SiO2 nanocoatings, even though the Si-SiO2 has a slightly increased modulation efficiency. These periodically aligned pyramids resembled as a mesa array significantly suppress the lateral diffusion induced by longer diffusion, resulting in an equivalent resolution of bare-Si. This novel Si-TPA based STM is highly desired for realizing a high-performance THz imager and provides a feasible approach to breaking the trade-off between resolution and modulation efficiency.

19.
Opt Express ; 28(21): 30502-30512, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115050

RESUMO

Surface plasmon polaritons have been extensively studied owing to the promising characteristics of near fields. In this paper, the cascade coupling of graphene surface plasmon polaritons (GSPPs) originating from cascading excitation and multiple coupling within a composite graphene-dielectric stack is presented. GSPPs confined to graphene layers are distributed in the entire stack as waveguide modes. Owing to the near-field enhancement effect and large lifetime of the GSPPs, the terahertz wave-graphene interaction is significantly enhanced, which induces an ultra-extraordinary optical transmission (UEOT) together with the reported negative dynamic conductivity of graphene. Furthermore, owing to cascade coupling, the UEOT exhibits considerable transmission enhancement, up to three orders of magnitude, and frequency and angle selections. Based on the key characteristics of cascade coupling, the mode density and coupling intensity of GSPPs, the dependences of the number of graphene layers in the stack, the thickness of dielectric buffers, and the effective Fermi levels of the graphene on the UEOT are also analyzed. The proposed mechanism can pave the way for using layered plasmonic materials in electric devices, such as amplifiers, sensors, detectors, and modulators.

20.
Opt Express ; 28(14): 21062-21071, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32680153

RESUMO

The wafer-scale La:YIG single crystal thick films were fabricated on a three-inch gadolinium gallium garnet (GGG) substrate by liquid phase epitaxy method. The terahertz (THz) optical and magneto-optical properties of La:YIG film were demonstrated by THz time domain spectroscopy (THz-TDS). The results show that a high refractive index of approximately 4.09 and a low absorption coefficient of 10-50 cm-1 from 0.1 to 1.6 THz for this La:YIG film. Moreover, the THz Faraday rotation effect of La:YIG film was measured by the orthogonal polarization detection method in THz-TDS system, which can be actively manipulated by a weak longitudinal magnetic field of up to 0.155 T. With 5 samples stacked together, the Faraday rotation angle varies linearly from -15° to 15°, and the Verdet constant of La:YIG is about 100 °/mm/T within the saturation magnetization. This magneto-optical single crystal thick film with large area shows low loss, high permittivity and strong magneto-optical effect in the THz regime, which will be widely used in magneto-optical polarization conversion, nonreciprocal phase shifter and isolator for THz waves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...