Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2311461, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386310

RESUMO

PbS quantum dot (QD) solar cells harvest near-infrared solar radiation. Their conventional hole transport layer has limited hole collection efficiency due to energy level mismatch and poor film quality. Here, how to resolve these two issues by using Ag-doped PbS QDs are demonstrated. On the one hand, Ag doping relieves the compressive stress during layer deposition and thus improves film compactness and homogeneity to suppress leakage currents. On the other hand, Ag doping increases hole concentration, which aligns energy levels and increases hole mobility to boost hole collection. Increased hole concentration also broadens the depletion region of the active layer, decreasing interface charge accumulation and promoting carrier extraction efficiency. A champion power conversion efficiency of 12.42% is achieved by optimizing the hole transport layer in PbS QD solar cells, compared to 9.38% for control devices. Doping can be combined with compressive strain relief to optimize carrier concentration and energy levels in QDs, and even introduce other novel phenomena such as improved film quality.

2.
Angew Chem Int Ed Engl ; 62(23): e202301234, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37022090

RESUMO

Fully conjugated porous aromatic frameworks (PAFs) have been constructed through Gilch reaction. The obtained PAFs have rigid conjugated backbones, high specific surface area, and excellent stability. The prepared PAF-154 and PAF-155 have been successfully applied in the perovskite solar cells (PSCs) by doping into the perovskite layer. The champion PSC devices afford a power conversion efficiency of 22.8 % and 22.4 %. It is found that the PAFs can be used as an efficient nucleation template, thus regulating the perovskite crystallinity. Meanwhile, PAFs can also passivate defects and promote carriers transporting in the perovskite film. By the comparative study with their linear counterpart, we unravel that the efficacy of PAFs is highly related to their porous structure and rigid fully conjugated networks. The unencapsulated devices with PAFs doping exhibit outstanding long-term stability, retaining 80 % of their initial efficiencies after half-year storage in ambient conditions.

3.
ACS Appl Mater Interfaces ; 14(12): 14729-14738, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35312272

RESUMO

Pb-Sn binary halide perovskites are a promising photovoltaic material due to their low toxicity and optical absorption spectrum well matched to the solar spectrum. However, the ready oxidation of Sn2+ to Sn4+ makes the material system currently too unstable to commercialize. Herein, ligand engineering based on antioxidative tyramine (hydrochloride, TACl) is presented for the first time to increase the stability of this material system. Using this strategy, we generate a two-dimensional (2D) capping layer on top of a standard three-dimensional Pb-Sn film. After capping, the surface defects can be passivated and the TACl-based 2D perovskite effectively protected Sn2+ from oxidation, which stabilized the Sn-Pb perovskite composition, avoiding the Pb-based perovskite formation. It is further found that the TACl treatment suppressed the halide segregation and improved the perovskite film photostability. Cell efficiency increases from 16.25 to 18.28% and device lifetime (T80) increases from less than 100 to over 1000 h. Our finding suggests that tuning ligand form/function represents a potentially highly productive direction to explore when trying to produce stable tin-based perovskite devices.

5.
ACS Appl Mater Interfaces ; 13(12): 14423-14432, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33733730

RESUMO

There has been a growing interest in the development of efficient flexible organic solar cells (OSCs) due to their unique capacity to provide energy sources for flexible electronics. To this end, it is required to design a compatible interlayer with low processing temperature and high electronic quality. In this work, we present that the electronic quality of the ZnO interlayer fabricated from a low-temperature (130 °C) sol-gel method can be significantly improved by doping an organic small molecule, TPT-S. The doped TPT-S, on the one hand, passivates uncoordinated Zn-related defects by forming N-Zn bonds. On the other hand, photoinduced charge transfer from TPT-S to ZnO is confirmed, which further fills up electron-deficient trap states. This renders ZnO improved electron transport capability and reduced charge recombination. By illuminating devices with square light pulses of varying intensities, we also reveal that an unfavorable charge trapping/detrapping process observed in low-temperature-processed devices is significantly inhibited after TPT-S doping. OSCs based on PBDB-T-2F:IT-4F with ZnO:TPT-S being the cathode interlayer yield efficiencies of 12.62 and 11.33% on rigid and flexible substrates, respectively. These observations convey the practicality of such hybrid ZnO in high-performance flexible devices.

6.
RSC Adv ; 11(56): 35141-35146, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35493160

RESUMO

Molybdenum oxide (MoO x ) is widely used as a buffer layer in optoelectronic devices to improve the charge extraction efficiency. The oxidation state of MoO x plays an important role in determining its electrical properties. However, there are few studies on the oxidation state to further guide the optimization of the MoO x buffer layer. In this work, inverted-structured polymer solar cells (PSCs) with a MoO x buffer layer were fabricated. Post-air annealing was used to control the cation valence state in MoO x . X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), atomic force microscopy (AFM) and transient photocurrent (TPC) were employed to study the valence state, energy level, morphology of the MoO x layers and the photovoltaic property and charge transfer efficiency of the devices. It was found that the oxidation state was effectively improved by the post-annealing process. As a result, the work function of MoO x was raised and the hole mobility was improved. The open-circuit voltages and the efficiencies of PTB7-Th:PC71BM based PSCs were enhanced from 0.77 V and 8.66% to 0.81 V and 10.01%, respectively. The results show that high oxidation state MoO x provides optimized energy level alignment, reduced defects and better charge transfer efficiency, which is more in line with the requirement of buffer layer materials for optoelectronic applications.

7.
ACS Appl Mater Interfaces ; 11(38): 34989-34996, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31487453

RESUMO

Preparing high-quality perovskite film with large grain size and fewer trap states is of vital importance in boosting the efficiency and stability of perovskite solar cells (PSCs). However, it is still difficult to obtain perfect MAPbI3 films by antisolvent treatment so far because of the small grain size, pinholes, and numerous defects in perovskite layers. Herein, acetonitrile (ACN) was introduced into chlorobenzene (CB) antisolvent to modify the MAPbI3 active layer. The results show that the ACN could control the ratio of the DMSO in MAI-PbI2-DMSO intermediate phase film effectively and thus manipulate the formation of MAPbI3 film. Relatively high-quality perovskite films with larger grain size were obtained when we added 6% v/v ACN into CB antisolvent. Based on the ACN-modified MAPbI3 film, the n-i-p planar device with the structure of FTO/SnO2/MAPbI3/spiro-OMeTAD/Ag yields the best power conversion efficiency (PCE) of 18.9%. It exhibited an enhancement of 16.6% in efficiency compared with the PCE of 16.2% for the control device. In addition, the device based on ACN-modified MAPbI3 also presents improved stability in air atmosphere.

8.
ACS Appl Mater Interfaces ; 11(16): 14810-14820, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30924628

RESUMO

In spite of the impressive progresses regarding perovskite-type solar cells, a clear understanding about underlying mechanisms therein is still sparse, especially because of the absence of spatially resolved device characteristics which should be linked to exciton formation efficiency, morphology, and crystallinity being estimated as functions of positions within active layers. Here, the planar CH3NH3PbI3 (MAPbI3) perovskite solar cells (PeSCs) with ZnO as the electron-transporting layer (ETL) were fabricated. By varying the wide range of MAPbI3 active-layer thickness, we estimate their device parameters and external quantum efficiencies in addition to internal absorption spectra (Q) by means of the transfer matrix method. Furthermore, the spectrally and spatially resolved internal quantum efficiencies (IQEs) as a function of the active-layer thickness within PeSCs were calculated, and the relationship between IQE and device parameters extracted from the current-voltage ( J- V) behaviors was discussed. It was found that the PeSC with MAPbI3 film thickness around 303 nm has a relatively high IQE and PCE, indicating that there is more power loss of PeSCs when the thickness of the MAPbI3 layer is either less or more than about 300 nm. Furthermore, time-resolved photoluminescence together with the thickness-dependent morphology and crystallinity of the MAPbI3 film demonstrate that there are two power loss processes in the fabricated PeSCs: one at the ZnO/MAPbI3 interface and the other in bulk. The present research is beneficial for further understanding of the fundamental physics for the PeSCs based on the ZnO ETL.

9.
J Phys Chem Lett ; 7(22): 4602-4610, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27758105

RESUMO

The high photoluminescence efficiency, high color purity, and easy tunable bandgap make inorganic perovskite nanocrystals very attractive in luminescent display applications. Here, we report a color-saturated, red light-emitting diode (LED) using an inverted organic/inorganic hybrid structure and perovskite nanocrystals. We demonstrated that through a simple post treatment to the perovskite nanocrystals with polyethylenimine, the surface defects of the perovskite nanocrystals could be well passivated, leading to great enhancements on their absolute photoluminescence quantum yield and photoluminescence lifetime. Through using a well-passivated perovskite nanocrystal film and optimizing the charge balance, we achieved an electroluminescence LED with a current efficiency of 3.4 cd A-1, corresponding to an external quantum efficiency (EQE) of 6.3%, which is the highest value reported among perovskite NC LEDs so far.

10.
ACS Appl Mater Interfaces ; 7(37): 20793-800, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26331339

RESUMO

Metal sulfide Zn1-xCdxS nanowires (NWs) covering the entire compositional range prepared by one step solvothermal method were used to fabricate gas sensors. This is the first time for ternary metal sulfide nanostructures to be used in the field of gas sensing. Surprisingly, the sensors based on Zn1-xCdxS nanowires were found to exhibit enhanced response to ethanol compared to those of binary CdS and ZnS NWs. Especially for the sensor based on the Zn1-xCdxS (x = 0.4) NWs, a large sensor response (s = 12.8) and a quick rise time (2 s) and recovery time (1 s) were observed at 206 °C toward 20 ppm ethanol, showing preferred selectivity. A dynamic equilibrium mechanism of oxygen molecules absorption process and carrier intensity change in the NWs was used to explain the higher response of Zn1-xCdxS. The reason for the much quicker response and recovery speed of the Zn1-xCdxS NWs than those of the binary ZnS NWs was also discussed. These results demonstrated that the growth of metal sulfide Zn1-xCdxS nanostructures can be utilized to develop gas sensors with high performance.

11.
ACS Appl Mater Interfaces ; 7(13): 7146-52, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25781480

RESUMO

Without using any environmentally hazardous organic solution, we fabricated hybrid solar cells (HSCs) based on the aqueous-solution-processed poly(3-hexylthiophene) (P3HT) dots and CdTe nanocrystals (NCs). As a novel aqueous donor material, the P3HT dots are prepared through a reprecipitation method and present an average diameter of 2.09 nm. When the P3HT dots are mixed with the aqueous CdTe NCs, the dependence of the device performance on the donor-acceptor ratio shows that the optimized ratio is 1:24. Specifically, the dependence of the device performance on the active-layer thermal annealing conditions is investigated. As a result, the optimized annealing temperature is 265 °C, and the incorporation of P3HT dots as donor materials successfully reduced the annealing time from 1 h to 10 min. In addition, the transmission electron microscopy and atomic force microscopy measurements demonstrate that the size of the CdTe NCs increased as the annealing time increased, and the annealing process facilitates the formation of a smoother interpenetrating network in the active layer. Therefore, charge separation and transport in the P3HT dots:CdTe NCs layer are more efficient. Eventually, the P3HT dots:CdTe NCs solar cells achieved 4.32% power conversion efficiency. The polymer dots and CdTe NCs based aqueous-solution-processed HSCs provide an effective way to avoid a long-time thermal annealing process of the P3HT dots:CdTe NCs layer and largely broaden the donor materials for aqueous HSCs.

12.
Phys Chem Chem Phys ; 15(7): 2449-58, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23319079

RESUMO

The electronic structure and charge transport property of 9,10-distyrylanthracene (DSA) and its derivatives with high solid-state luminescent efficiency were investigated by using density functional theory (DFT). The impact of substituents on the optimized structure, reorganization energy, ionization potential (IP) and electronic affinity (EA), frontier orbitals, crystal packing, transfer integrals and charge mobility were explored based on Marcus theory. It was found that the hole mobility of DSA was 0.21 cm(2) V(-1) s(-1) while the electron mobility was 0.026 cm(2) V(-1) s(-1), which were relatively high due to the low reorganization energies and high transfer integrals. The calculated results showed that the charge transport property of these compounds can be significantly tuned via introducing different substituents to DSA. When one electron-withdrawing group (cyano group) was introduced into DSA, DSA-CN exhibited hole mobility of 0.14 cm(2) V(-1) s(-1) which was on the same order of that of DSA. However, the electron mobility of DSA-CN decreased to 8.14 × 10(-4) cm(2) V(-1) s(-1) due to the relatively large reorganization energy and disadvantageous transfer integral. The effect of electron-donating substituents was investigated by introducing methoxy group and tertiary butyl into DSA. DSA-OCH(3) and DSA-TBU showed much lower charge mobility than DSA resulting from the steric hindrance of substituents. On the other hand, both of them exhibited balanced transport properties (for DSA-OCH(3), the hole and electron mobility was 0.0026 and 0.0027 cm(2) V(-1) s(-1); for DSA-TBU, the hole and electron mobility was 0.045 and 0.012 cm(2) V(-1) s(-1)) because of their similar transfer integrals for both hole and electron. DSA and its derivatives were supposed to be one of the most excellent emissive materials for organic electroluminescent applications because of their high charge mobility and high solid-state luminescent efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...