Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AAPS J ; 25(4): 66, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380821

RESUMO

Capturing human equivalent drug exposures preclinically is a key challenge in the translational process. Motivated by the need to recapitulate the pharmacokinetic (PK) profile of the clinical stage Mcl-1 inhibitor AZD5991 in mice, we describe the methodology used to develop a refined mathematical model relating clinically relevant concentration profiles to efficacy. Administration routes were explored to achieve target exposures matching the clinical exposure of AZD5991. Intravenous infusion using vascular access button (VAB) technology was found to best reproduce clinical target exposures of AZD5991 in mice. Exposure-efficacy relationships were evaluated, demonstrating that dissimilar PK profiles result in differences in target engagement and efficacy outcomes. Thus, these data underscore the importance of accurately ascribing key PK metrics in the translational process to enable clinically meaningful predictions of efficacy.


Assuntos
Compostos Macrocíclicos , Humanos , Animais , Camundongos , Modelos Animais de Doenças , Oncologia , Tecnologia
2.
Mol Pharm ; 19(1): 172-187, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34890209

RESUMO

A physiologically based pharmacokinetic model was developed to describe the tissue distribution kinetics of a dendritic nanoparticle and its conjugated active pharmaceutical ingredient (API) in plasma, liver, spleen, and tumors. Tumor growth data from MV-4-11 tumor-bearing mice were incorporated to investigate the exposure/efficacy relationship. The nanoparticle demonstrated improved antitumor activity compared to the conventional API formulation, owing to the extended released API concentrations at the site of action. Model simulations further enabled the identification of critical parameters that influence API exposure in tumors and downstream efficacy outcomes upon nanoparticle administration. The model was utilized to explore a range of dosing schedules and their effect on tumor growth kinetics, demonstrating the improved antitumor activity of nanoparticles with less frequent dosing compared to the same dose of naked APIs in conventional formulations.


Assuntos
Antineoplásicos/administração & dosagem , Dendrímeros/farmacocinética , Nanopartículas/metabolismo , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos SCID , Transplante de Neoplasias , Distribuição Tecidual , Resultado do Tratamento
3.
Commun Biol ; 4(1): 112, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495510

RESUMO

Dual Bcl-2/Bcl-xL inhibitors are expected to deliver therapeutic benefit in many haematological and solid malignancies, however, their use is limited by tolerability issues. AZD4320, a potent dual Bcl-2/Bcl-xL inhibitor, has shown good efficacy however had dose limiting cardiovascular toxicity in preclinical species, coupled with challenging physicochemical properties, which prevented its clinical development. Here, we describe the design and development of AZD0466, a drug-dendrimer conjugate, where AZD4320 is chemically conjugated to a PEGylated poly-lysine dendrimer. Mathematical modelling was employed to determine the optimal release rate of the drug from the dendrimer for maximal therapeutic index in terms of preclinical anti-tumour efficacy and cardiovascular tolerability. The optimised candidate is shown to be efficacious and better tolerated in preclinical models compared with AZD4320 alone. The AZD4320-dendrimer conjugate (AZD0466) identified, through mathematical modelling, has resulted in an improved therapeutic index and thus enabled progression of this promising dual Bcl-2/Bcl-xL inhibitor into clinical development.


Assuntos
Antineoplásicos , Dendrímeros , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Dendrímeros/síntese química , Dendrímeros/química , Dendrímeros/farmacocinética , Dendrímeros/uso terapêutico , Cães , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Ratos , Ratos Wistar , Índice Terapêutico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína bcl-X/antagonistas & inibidores
4.
Clin Cancer Res ; 26(24): 6535-6549, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32988967

RESUMO

PURPOSE: Targeting Bcl-2 family members upregulated in multiple cancers has emerged as an important area of cancer therapeutics. While venetoclax, a Bcl-2-selective inhibitor, has had success in the clinic, another family member, Bcl-xL, has also emerged as an important target and as a mechanism of resistance. Therefore, we developed a dual Bcl-2/Bcl-xL inhibitor that broadens the therapeutic activity while minimizing Bcl-xL-mediated thrombocytopenia. EXPERIMENTAL DESIGN: We used structure-based chemistry to design a small-molecule inhibitor of Bcl-2 and Bcl-xL and assessed the activity against in vitro cell lines, patient samples, and in vivo models. We applied pharmacokinetic/pharmacodynamic (PK/PD) modeling to integrate our understanding of on-target activity of the dual inhibitor in tumors and platelets across dose levels and over time. RESULTS: We discovered AZD4320, which has nanomolar affinity for Bcl-2 and Bcl-xL, and mechanistically drives cell death through the mitochondrial apoptotic pathway. AZD4320 demonstrates activity in both Bcl-2- and Bcl-xL-dependent hematologic cancer cell lines and enhanced activity in acute myeloid leukemia (AML) patient samples compared with the Bcl-2-selective agent venetoclax. A single intravenous bolus dose of AZD4320 induces tumor regression with transient thrombocytopenia, which recovers in less than a week, suggesting a clinical weekly schedule would enable targeting of Bcl-2/Bcl-xL-dependent tumors without incurring dose-limiting thrombocytopenia. AZD4320 demonstrates monotherapy activity in patient-derived AML and venetoclax-resistant xenograft models. CONCLUSIONS: AZD4320 is a potent molecule with manageable thrombocytopenia risk to explore the utility of a dual Bcl-2/Bcl-xL inhibitor across a broad range of tumor types with dysregulation of Bcl-2 prosurvival proteins.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Neoplasias Hematológicas/tratamento farmacológico , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonas/farmacologia , Trombocitopenia/tratamento farmacológico , Proteína bcl-X/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Apoptose , Benzamidas/uso terapêutico , Proliferação de Células , Feminino , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Piperidinas/uso terapêutico , Sulfonas/uso terapêutico , Trombocitopenia/metabolismo , Trombocitopenia/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Mol Cancer Ther ; 18(5): 909-919, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30872381

RESUMO

Barasertib (AZD1152), a pro-drug of the highly potent and selective Aurora B kinase inhibitor AZD2811, showed promising clinical activity in relapsed/refractory diffuse large B-cell lymphoma (DLBCL) patients administered as a 4-day infusion. To improve potential therapeutic benefit of Aurora B kinase inhibition, a nanoparticle formulation of AZD2811 has been developed to address limitations of repeated intravenous infusion. One of the challenges with the use of nanoparticles for chronic treatment of tumors is optimizing dose and schedule required to enable repeat administration to sustain tumor growth inhibition. AZD2811 gives potent cell growth inhibition across a range of DLBCL cells lines in vitro In vivo, repeat administration of the AZD2811 nanoparticle gave antitumor activity at half the dose intensity of AZD1152. Compared with AZD1152, a single dose of AZD2811 nanoparticle gave less reduction in pHH3, but increased apoptosis and reduction of cells in G1 and G2-M, albeit at later time points, suggesting that duration and depth of target inhibition influence the nature of the tumor cell response to drug. Further exploration of the influence of dose and schedule on efficacy revealed that AZD2811 nanoparticle can be used flexibly with repeat administration of 25 mg/kg administered up to 7 days apart being sufficient to maintain equivalent tumor control. Timing of repeat administration could be varied with 50 mg/kg every 2 weeks controlling tumor control as effectively as 25 mg/kg every week. AZD2811 nanoparticle can be administered with very different doses and schedules to inhibit DLBCL tumor growth, although maximal tumor growth inhibition was achieved with the highest dose intensities.


Assuntos
Acetanilidas/farmacologia , Aurora Quinase B/genética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Acetanilidas/química , Animais , Aurora Quinase B/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Camundongos , Nanopartículas/química , Inibidores de Proteínas Quinases/química , Quinazolinas/química , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Drug Metab Dispos ; 45(12): 1345-1353, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28986473

RESUMO

Phosphorylation of xenobiotics is rare, probably owing to a strong evolutionary pressure against it. This rarity may have attracted more attention recently as a result of intentionally designed kinase-substrate analogs that depend on kinase-catalyzed activation to form phosphorylated active drugs. We report a rare phosphorylated metabolite observed unexpectedly in mouse plasma samples after an oral dose of a Tankyrase inhibitor that was not intended to be a kinase substrate, i.e., (S)-2-(4-(6-(3,4-dimethylpiperazin-1-yl)-4-methylpyridin-3-yl)phenyl)-8-(hydroxymethyl)quinazolin-4(3H)-one (AZ2381). The phosphorylated metabolite was not generated in mouse hepatocytes. In vitro experiments showed that the phosphorylation of AZ2381 occurred in mouse whole blood with heparin as anticoagulant but not in mouse plasma. The phosphorylated metabolite was also produced in rat, dog, and human blood, albeit at lower yields than in mouse. Divalent metal ions are required for the phosphorylation since the reaction is inhibited by the metal chelator EDTA. Further investigations with different cellular fractions of mouse blood revealed that the phosphorylation of AZ2381 was mediated by erythrocytes but did not occur with leukocytes. The levels of 18O incorporation into the phosphorylated metabolite when inorganic 18O4-phosphate and γ-18O4-ATP were added to the mouse blood incubations separately suggested that the phosphoryl transfer was from inorganic phosphate rather than ATP. It remains unclear which enzyme present in red blood cells is responsible for this rare phosphorylation.


Assuntos
Eritrócitos/metabolismo , Fosfotransferases/metabolismo , Piperazinas/metabolismo , Quinazolinas/metabolismo , Tanquirases/antagonistas & inibidores , Xenobióticos/metabolismo , Administração Oral , Animais , Cães , Ácido Edético/farmacologia , Eritrócitos/efeitos dos fármacos , Feminino , Heparina/sangue , Heparina/metabolismo , Hepatócitos/metabolismo , Humanos , Camundongos , Camundongos SCID , Fosfatos/metabolismo , Fosforilação/efeitos dos fármacos , Piperazinas/sangue , Piperazinas/síntese química , Piperazinas/farmacologia , Quinazolinas/sangue , Quinazolinas/síntese química , Quinazolinas/farmacologia , Ratos , Xenobióticos/sangue , Xenobióticos/síntese química , Xenobióticos/farmacologia
7.
Mol Cancer Ther ; 16(6): 1031-1040, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28292940

RESUMO

Barasertib (AZD1152), a highly potent and selective aurora kinase B inhibitor, gave promising clinical activity in elderly acute myeloid leukemia (AML) patients. However, clinical utility was limited by the requirement for a 7-day infusion. Here we assessed the potential of a nanoparticle formulation of the selective Aurora kinase B inhibitor AZD2811 (formerly known as AZD1152-hQPA) in preclinical models of AML. When administered to HL-60 tumor xenografts at a single dose between 25 and 98.7 mg/kg, AZD2811 nanoparticle treatment delivered profound inhibition of tumor growth, exceeding the activity of AZD1152. The improved antitumor activity was associated with increased phospho-histone H3 inhibition, polyploidy, and tumor cell apoptosis. Moreover, AZD2811 nanoparticles increased antitumor activity when combined with cytosine arabinoside. By modifying dose of AZD2811 nanoparticle, therapeutic benefit in a range of preclinical models was further optimized. At high-dose, antitumor activity was seen in a range of models including the MOLM-13 disseminated model. At these higher doses, a transient reduction in bone marrow cellularity was observed demonstrating the potential for the formulation to target residual disease in the bone marrow, a key consideration when treating AML. Collectively, these data establish that AZD2811 nanoparticles have activity in preclinical models of AML. Targeting Aurora B kinase with AZD2811 nanoparticles is a novel approach to deliver a cell-cycle inhibitor in AML, and have potential to improve on the clinical activity seen with cell-cycle agents in this disease. Mol Cancer Ther; 16(6); 1031-40. ©2017 AACR.


Assuntos
Antineoplásicos/administração & dosagem , Aurora Quinase B/antagonistas & inibidores , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Nanopartículas , Organofosfatos/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Quinazolinas/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Medula Óssea/patologia , Linhagem Celular Tumoral , Citarabina/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Feminino , Células HL-60 , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/mortalidade , Camundongos , Organofosfatos/farmacocinética , Poliploidia , Inibidores de Proteínas Quinases/farmacocinética , Quinazolinas/farmacocinética , Ratos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Mol Cancer Ther ; 15(11): 2563-2574, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27573426

RESUMO

The bromodomain and extraterminal (BET) protein BRD4 regulates gene expression via recruitment of transcriptional regulatory complexes to acetylated chromatin. Pharmacological targeting of BRD4 bromodomains by small molecule inhibitors has proven to be an effective means to disrupt aberrant transcriptional programs critical for tumor growth and/or survival. Herein, we report AZD5153, a potent, selective, and orally available BET/BRD4 bromodomain inhibitor possessing a bivalent binding mode. Unlike previously described monovalent inhibitors, AZD5153 ligates two bromodomains in BRD4 simultaneously. The enhanced avidity afforded through bivalent binding translates into increased cellular and antitumor activity in preclinical hematologic tumor models. In vivo administration of AZD5153 led to tumor stasis or regression in multiple xenograft models of acute myeloid leukemia, multiple myeloma, and diffuse large B-cell lymphoma. The relationship between AZD5153 exposure and efficacy suggests that prolonged BRD4 target coverage is a primary efficacy driver. AZD5153 treatment markedly affects transcriptional programs of MYC, E2F, and mTOR. Of note, mTOR pathway modulation is associated with cell line sensitivity to AZD5153. Transcriptional modulation of MYC and HEXIM1 was confirmed in AZD5153-treated human whole blood, thus supporting their use as clinical pharmacodynamic biomarkers. This study establishes AZD5153 as a highly potent, orally available BET/BRD4 inhibitor and provides a rationale for clinical development in hematologic malignancies. Mol Cancer Ther; 15(11); 2563-74. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Hematológicas/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Biomarcadores , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Humanos , Camundongos , Terapia de Alvo Molecular , Proteínas Nucleares/química , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/química , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Mol Pharmacol ; 83(6): 1247-56, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23558446

RESUMO

Platelet-derived growth factor receptor α (PDGFRα) is a receptor tyrosine kinase that promotes cell survival and is expressed in both the tumor and the stromal components of human cancers. We have developed a fully human monoclonal antibody, MEDI-575, that selectively binds to human PDGFRα with high affinity, with no observable affinity for murine PDGFRα. To more fully characterize the role of PDGFRα in the regulation of tumor stroma, we evaluated the in vivo antitumor effects of MEDI-575 in tumor-bearing severe combined immunodeficient (SCID) mice and in genetically altered SCID mice expressing human PDGFRα in place of murine PDGFRα. We used the Calu-6 non-small cell lung cancer model because it lacks an in vitro proliferative response to PDGFRα activation. Antitumor activity was observed when the study was performed in mice expressing the human receptor, but no activity was observed in the mice expressing the murine receptor. Immunohistologic analysis of the tumors from mice expressing human PDGFRα showed a highly significant reduction in stromal fibroblast content and only minor changes in tumor proliferative index in tumors exposed to MEDI-575 compared with the results seen in vehicle-treated tumors or in tumors from mice expressing murine PDGFRα. Additional in vitro studies indicated that exposure of primary cancer-associated fibroblasts to MEDI-575 can directly affect proliferation and key signaling pathways in these cells. These results highlight the potential for observing antitumor activity with MEDI-575 through modulation of the stromal component of tumors and confirm that the PDGFRα pathway can play a role in maintaining a tumor microenvironment conducive to tumor growth.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Fibroblastos/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Animais , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Nus , Camundongos SCID , Células NIH 3T3 , Transplante de Neoplasias , Fosforilação , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Células Estromais/patologia , Transplante Heterólogo
10.
Mol Cancer Ther ; 9(1): 145-56, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20053776

RESUMO

Localized angiopoietin-2 (Ang2) expression has been shown to function as a key regulator of blood vessel remodeling and tumor angiogenesis, making it an attractive candidate for antiangiogenic therapy. A fully human monoclonal antibody (3.19.3) was developed, which may have significant pharmaceutical advantages over synthetic peptide-based approaches in terms of reduced immunogenicity and increased half-life to block Ang2 function. The 3.19.3 antibody potently binds Ang2 with an equilibrium dissociation constant of 86 pmol/L, leading to inhibition of Tie2 receptor phosphorylation in cell-based assays. In preclinical models, 3.19.3 treatment blocked blood vessel formation in Matrigel plug assays and in human tumor xenografts. In vivo studies with 3.19.3 consistently showed broad antitumor activity as a single agent across a panel of diverse subcutaneous and orthotopic xenograft models. Combination studies of 3.19.3 with cytotoxic drugs or anti-vascular endothelial growth factor agents showed significant improvements in antitumor activity over single-agent treatments alone with no apparent evidence of increased toxicity. Initial pharmacokinetic profiling studies in mice and nonhuman primates suggested that 3.19.3 has a predicted human half-life of 10 to 14 days. These studies provide preclinical data for 3.19.3 as a potential new antiangiogenic therapy as a single agent or in combination with chemotherapy or vascular endothelial growth factor inhibitors for the treatment of cancer.


Assuntos
Angiopoietina-2/imunologia , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/uso terapêutico , Especificidade de Anticorpos/efeitos dos fármacos , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Morte Celular/efeitos dos fármacos , Colágeno/metabolismo , Combinação de Medicamentos , Humanos , Laminina/metabolismo , Camundongos , Neovascularização Patológica/tratamento farmacológico , Fosforilação/efeitos dos fármacos , Primatas , Ligação Proteica/efeitos dos fármacos , Proteoglicanas/metabolismo , Receptor TIE-2/metabolismo
11.
Invest New Drugs ; 28(5): 561-74, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19626278

RESUMO

Despite the widespread use of rituximab, a chimeric monoclonal antibody with demonstrated efficacy in the treatment of non-Hodgkin's lymphomas, there is a recognized need to develop new agents with improved efficacy. Towards this end, using XenoMouse technology, a fully human IgG1 anti-CD20 monoclonal antibody was generated. This antibody, denoted mAb 1.5.3, evoked enhanced pro-apoptotic activity in vitro, as compared to rituximab, in the Ramos lymphoma cell line. Also, mAb 1.5.3 mediated both complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC) similar to rituximab in human B-lymphoma lines. Interestingly, mAb 1.5.3 demonstrated superior ADCC compared to rituiximab when FcgammaRIIIa F/F allotype donors were profiled and superior cytolytic activity across multiple human B-lymphoma and chronic B-cell leukemia lines in an in vitro whole blood assay. Furthermore, mAb 1.5.3 exhibited enhanced anti-tumor activity in Ramos, Daudi, and Namalwa tumour xenograft models. Lastly, mAb 1.5.3 produced a superior B-cell depletion profile in lymph node organs and bone marrow as compared to rituximab in a primate pharmacodynamic (PD) model. These findings underscore the potential of mAb 1.5.3 to exhibit improved clinical activity in the treatment of B-cell malignancies compared to rituximab.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/uso terapêutico , Antígenos CD20/imunologia , Linfoma de Células B/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Murinos , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Mapeamento de Epitopos , Humanos , Linfoma de Células B/imunologia , Linfoma de Células B/patologia , Macaca fascicularis , Camundongos , Camundongos SCID , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/imunologia , Rituximab
12.
Prostate ; 65(4): 347-54, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16032708

RESUMO

BACKGROUND: Prostate cancer bone metastasis is distinguished by the predominance of osteoblastic lesions. This phenotype has been difficult to reproduce in animal models. Here, we describe a model utilizing the 22Rv1 human prostate cancer cell line that generates osteolytic lesions and a prominent spiculated periosteal osteoblastic response following intraosseous injection in scid mice. METHODS: We injected 22Rv1-luciferase prostate cancer cells directly into the tibiae of C.B-17 scid mice. We analyzed tumor growth and pathology every 2 weeks using radiographic and histologic techniques. RESULTS: X-ray analysis revealed that 22Rv1 tumors elicit a mixed-type lesion including some osteolysis and a robust induction of periosteal bone formation, in contrast to PC3M-luciferase intraosseous tumors which induce only extensive osteolysis. Micro-computerized tomographic imaging shows that 22Rv1 tumors exhibit both osteolytic and osteoblastic features which become apparent between 4 and 6 weeks post injection. There is initial disruption of the cortex and corresponding invasion of the periosteum which is associated with a vigorous osteoblastic response. Histological analysis of late stage tumors shows that the tumor has grown outside of the medullary cavity and surrounds the tibia underneath the periosteum and intermixed with spicules of woven bone which is detected in the radiographic analysis. CONCLUSIONS: The overall pattern of this model is suggestive of clinical cases of prostate cancer metastasis in which periosteal responses are noted, often in association with rapidly progressive disease. We expect that intraosseous injection of 22Rv1 cells will provide a new experimental model for the study of osteoblastic prostate cancer metastasis.


Assuntos
Neoplasias Ósseas/secundário , Periósteo/patologia , Neoplasias da Próstata/patologia , Animais , Neoplasias Ósseas/diagnóstico por imagem , Linhagem Celular Tumoral , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos SCID , Osteólise/patologia , Periósteo/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Tíbia/diagnóstico por imagem , Tíbia/patologia , Tomografia Computadorizada por Raios X , Transplante Heterólogo
13.
Cancer Res ; 64(21): 7995-8001, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15520207

RESUMO

MLN2704 is an antibody-chemotherapeutic conjugate designed to target prostate-specific membrane antigen (PSMA). PSMA is a transmembrane receptor whose expression is largely restricted to prostatic epithelium and prostate cancer cells with its expression level increasing during the progression of malignancy. MLN2704 consists of a de-immunized, monoclonal antibody that is specific for PSMA conjugated to drug maytansinoid 1 (DM1), a microtubule-depolymerizing compound. After antibody binding to PSMA and the subsequent cellular internalization of this complex, DM1 is released leading to cell death. MLN2704 has an approximate half-life of 39 hours in scid mice bearing CWR22 tumor tissue, and the antibody effectively penetrates xenograft tumor tissue. Optimization of dosage and schedule of MLN2704 administration defined interdependency between these conditions that maximized efficacy with no apparent toxicity. Tumor growth delays of approximately 100 days could be achieved on the optimized schedule of one dose of 60 mg/kg MLN2704 every 14 days for five doses (q14dx5). The unconjugated antibody (MLN591) demonstrated essentially no antitumor activity and DM1 alone or a non-PSMA targeted antibody-DM1 conjugate was only weakly active. Furthermore, we show that MLN2704 is active in a novel model of osteoblastic prostate cancer metastasis.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Glutamato Carboxipeptidase II/antagonistas & inibidores , Imunotoxinas/uso terapêutico , Maitansina/análogos & derivados , Neoplasias da Próstata/terapia , Animais , Antígenos de Superfície , Neoplasias Ósseas/secundário , Humanos , Masculino , Maitansina/uso terapêutico , Camundongos , Transplante de Neoplasias , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...