Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Phys Chem Chem Phys ; 26(24): 17075-17082, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38842020

RESUMO

The topological and magnetic properties induced by topological defects in graphene have attracted attention. Here, we study a novel topological defect structure for graphene nanoribbons interspersed with C558-line defects along the armchair boundary, which possesses topological properties and is tritopic. Using strain engineering to regulate the magnitude of hopping at defects, the position of the energy level can be easily changed to achieve a topological phase transition. We also discuss the local magnetic moment and the ferromagnetic ground state in the context of line defects. This leads to spin polarization of the whole system. Finally, when C558 graphene nanoribbons are controlled by a nonlocal exchange magnetic field, spin-polarized quantum conductivity occurs near the Fermi level. Consequently, spin filtering can be achieved by varying the incident energy of the electrons. Our results provide new insights into realizing topological and spin electronics in low-dimensional quantum devices.

2.
Int Immunopharmacol ; 134: 112224, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723370

RESUMO

Immunotherapy is becoming increasingly important, but the overall response rate is relatively low in the treatment of gastric cancer (GC). The application of tumor mutational burden (TMB) in predicting immunotherapy efficacy in GC patients is limited and controversial, emphasizing the importance of optimizing TMB-based patient selection. By combining TMB and major histocompatibility complex (MHC) related hub genes, we established a novel TM-Score. This score showed superior performance for immunotherapeutic selection (AUC = 0.808) compared to TMB, MSI status, and EBV status. Additionally, it predicted the prognosis of GC patients. Subsequently, a machine learning model adjusted by the TM-Score further improved the accuracy of survival prediction (AUC > 0.8). Meanwhile, we found that GC patients with low TM-Score had a higher mutation frequency, higher expression of HLA genes and immune checkpoint genes, and higher infiltration of CD8+ T cells, CD4+ helper T cells, and M1 macrophages. This suggests that TM-Score is significantly associated with tumor immunogenicity and tumor immune environment. Notably, based on the RNA-seq and scRNA-seq, it was found that AKAP5, a key component gene of TM-Score, is involved in anti-tumor immunity by promoting the infiltration of CD4+ T cells, NK cells, and myeloid cells. Additionally, siAKAP5 significantly reduced MHC-II mRNA expression in the GC cell line. In addition, our immunohistochemistry assays confirmed a positive correlation between AKAP5 and human leukocyte antigen (HLA) expression. Furthermore, AKAP5 levels were higher in patients with longer survival and those who responded to immunotherapy in GC, indicating its potential value in predicting prognosis and immunotherapy outcomes. In conclusion, TM-Score, as an optimization of TMB, is a more precise biomarker for predicting the immunotherapy efficacy of the GC population. Additionally, AKAP5 shows promise as a therapeutic target for GC.


Assuntos
Imunoterapia , Aprendizado de Máquina , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/terapia , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidade , Imunoterapia/métodos , Prognóstico , Biomarcadores Tumorais/genética , Proteínas de Ancoragem à Quinase A/genética , Microambiente Tumoral/imunologia , Mutação , Resultado do Tratamento
3.
Front Immunol ; 15: 1328145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38298192

RESUMO

Despite the clear benefits demonstrated by immunotherapy, there is still an inevitable off-target effect resulting in serious adverse immune reactions. In recent years, the research and development of Drug Delivery System (DDS) has received increased prominence. In decades of development, DDS has demonstrated the ability to deliver drugs in a precisely targeted manner to mitigate side effects and has the advantages of flexible control of drug release, improved pharmacokinetics, and drug distribution. Therefore, we consider that combining cancer immunotherapy with DDS can enhance the anti-tumor ability. In this paper, we provide an overview of the latest drug delivery strategies in cancer immunotherapy and briefly introduce the characteristics of DDS based on nano-carriers (liposomes, polymer nano-micelles, mesoporous silica, extracellular vesicles, etc.) and coupling technology (ADCs, PDCs and targeted protein degradation). Our aim is to show readers a variety of drug delivery platforms under different immune mechanisms, and analyze their advantages and limitations, to provide more superior and accurate targeting strategies for cancer immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Imunoterapia/métodos
4.
J Exp Clin Cancer Res ; 43(1): 8, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167055

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid tumors. The tumor immune microenvironment (TIME) formed by interactions among cancer cells, immune cells, cancer-associated fibroblasts (CAF), and extracellular matrix (ECM) components drives PDAC in a more immunosuppressive direction: this is a major cause of therapy resistance and poor prognosis. In recent years, research has advanced our understanding of the signaling mechanism by which TIME components interact with the tumor and the evolution of immunophenotyping. Through revolutionary technologies such as single-cell sequencing, we have gone from simply classifying PDACs as "cold" and "hot" to a more comprehensive approach of immunophenotyping that considers all the cells and matrix components. This is key to improving the clinical efficacy of PDAC treatments. In this review, we elaborate on various TIME components in PDAC, the signaling mechanisms underlying their interactions, and the latest research into PDAC immunophenotyping. A deep understanding of these network interactions will contribute to the effective combination of TIME-based therapeutic approaches, such as immune checkpoint inhibitors (ICI), adoptive cell therapy, therapies targeting myeloid cells, CAF reprogramming, and stromal normalization. By selecting the appropriate integrated therapies based on precise immunophenotyping, significant advances in the future treatment of PDAC are possible.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Resultado do Tratamento , Transdução de Sinais , Microambiente Tumoral
6.
Biomed Pharmacother ; 171: 116058, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171240

RESUMO

Kirsten rats sarcoma viral oncogene (KRAS), the first discovered human oncogene, has long been recognized as "undruggable". KRAS mutations frequently occur in multiple human cancers including non-small cell lung cancer(NSCLC), colorectal cancer(CRC) and pancreatic ductal adenocarcinoma(PDAC), functioning as a "molecule switch" determining the activation of various oncogenic signaling pathways. Except for its intrinsic pro-tumorigenic role, KRAS alteration also exhibits an unique immune signature characterized by elevated PD-L1 level and high tumor mutational burden(TMB). KRAS mutation shape an immune suppressive microenvironment by impeding effective T cells infiltration and recruiting suppressive immune cells including myeloid-derived suppressor cells(MDSCs), regulatory T cells(Tregs), cancer associated fibroblasts(CAFs). In immune checkpoint inhibitor(ICI) era, NSCLC patients with mutated KRAS tend to be more responsive to ICI than patients with intact KRAS. The hallmark for KRAS mutation is the existence of multiple kinds of co-mutations. Different types of co-alterations have distinct tumor microenvironment(TME) signatures and responses to ICI. TP53 co-mutation possess a "hot" TME and achieve higher response to immunotherapy while other loss of function mutation correlated with a "colder" TME and a poor outcome to ICI-based therapy. The groundbreaking discovery of KRAS G12C inhibitors significantly improved outcomes for this KRAS subtype even though efficacy was limited to NSCLC patients. KRAS G12C inhibitors also restore the suppressive TME, creating an opportunity for combinations with ICI. However, an inevitable challenge to KRAS inhibitors is drug resistance. Promising combination strategies such as combination with SHP2 is an approach deserve further exploration because of their immune modulatory effect.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias Pancreáticas , Animais , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/patologia , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Microambiente Tumoral
7.
ACS Sens ; 8(6): 2263-2270, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37155824

RESUMO

Developing functional materials that directly integrate into miniaturized devices for sensing applications is essential for constructing the next-generation point-of-care system. Although crystalline structure materials such as metal organic frameworks are attractive materials exhibiting promising potential for biosensing, their integration into miniaturized devices is limited. Dopamine (DA) is a major neurotransmitter released by dopaminergic neurons and has huge implications in neurodegenerative diseases. Integrated microfluidic biosensors capable of sensitive monitoring of DA from mass-limited samples is thus of significant importance. In this study, we developed and systematically characterized a microfluidic biosensor functionalized with the hybrid material composed of indium phosphate and polyaniline nanointerfaces for DA detection. Under the flowing operation, this biosensor displays a linear dynamic sensing range going from 10-18 to 10-11 M and a limit of detection (LOD) value of 1.83 × 10-19 M. In addition to the high sensitivity, this microfluidic sensor showed good selectivity toward DA and high stability (>1000 cycles). Further, the reliability and practical utility of the microfluidic biosensor were demonstrated using the neuro-2A cells treated with the activator, promoter, and inhibiter. These promising results underscore the importance and potential of microfluidic biosensors integrated with hybrid materials as advanced biosensors systems.


Assuntos
Técnicas Biossensoriais , Microfluídica , Dopamina , Índio , Fosfatos , Reprodutibilidade dos Testes , Técnicas Biossensoriais/métodos
8.
Am J Cancer Res ; 12(11): 4988-5003, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504896

RESUMO

Right-sided colon cancer (RCC), as an independent tumor entity, shows a poor prognosis. It is imperative to detect immune microenvironment-related genes for predicting RCC patient prognosis and study their function in RCC. Tripartite motif-containing 27 (TRIM27) was identified as a risk signature from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) datasets by using weighted gene co-expression network analysis, differentially expressed analysis, and univariate Cox analysis. It predicted a poorer overall survival and increased lymph node metastasis, which were then validated in our 48 clinical samples. Using immunohistochemistry, TRIM27 was found to be highly expressed in both cancer cells and surrounding immunocytes, and its expression in tumor or immune cells both predicted a poorer prognosis. Thereafter, the functional mechanism, immune and molecular characteristics of TRIM27 were investigated using gene set enrichment analysis (GSEA), ESTIMATE, CIBERSORT, and gene set variation analysis (GSVA) at the single-cell, somatic mutation, and RNA-seq level. Patients with highly expressed TRIM27 presented lower CD4+ T cell infiltration and activation of the mTORC1/glycolysis pathway. In addition, patients with highly expressed TRIM27 were characterized by hypermetabolism, higher tumor purity, more BRAF mutation, and more chromosomal instability. Collectively, TRIM27 is an important immune-related prognostic biomarker in patients with RCC. It may function via activating the mTORC1/glycolysis pathway and suppressing CD4+ T cells. These results indicated that TRIM27 could be a promising therapeutic target in RCC.

10.
Dalton Trans ; 51(39): 14875-14881, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36017779

RESUMO

Molybdenum trioxide (MoO3) with a theoretical specific capacity of 1117 mA h g-1 is widely considered a promising anode material for lithium-ion batteries. However, the irreversible conversion reactions, low electrical conductivity, and detrimental volume expansion upon Li intercalation between the one-dimensional layered structures of MoO3 hinder its practical implementation. Herein, we report a facile synthetic protocol that allows surficial modification by replacing the terminal and bridging oxo groups of molybdenum oxide clusters. Successful organoimido functionalization resulted in a large cathodic shift in Mo(VI/V) reduction by 0.6 V, pronounced electronic communication between the organic moiety and the metal-oxide unit, and significant increase in electrical conductivity (80-100 Ω interfacial charge-transfer resistance). Combined with the enlarged active surface area due to the structural hindrance induced by the organic functionality, the steady specific capacity of the organoimido-modified molybdenum oxide clusters was greater than 1200 mA h g-1 at 900 mA g-1 at the end of 360 cycles, where the best value of 1653 mA h g-1 was achieved for the nitroaniline-substituted species. The steady capacity of 480 mA h g-1 was achieved in the fast charge-discharge process (3000 mA g-1) over 1400 cycles. The results indicate that the surficial modification of metal oxides with organo moieties using our facile synthetic method has broad application potential for metal oxides to be used as high-capacity electrode materials in the future.

11.
Phys Chem Chem Phys ; 24(28): 17337-17347, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35819058

RESUMO

AEIn2As2 (AE = Ca, Sr, Ba), as a new crucial nonmagnetic thermoelectric candidate, needs to be understood in terms of its potential electronic structure properties and topological characteristics in both experimental and theoretical studies. Here we report that AEIn2As2 with Zintl phases will undergo insulator-metal phase transition and topological quantum phase transition under pressure modulation based on first-principles calculations. Firstly, band inversion occurred between the In(As)-s and As(In)-p states in the structures of AEIn2As2 with the P63/mmc space group in the absence of pressure and identified that they are all non-trivial topological insulators. Next, Bader charge and AIM topology analysis elucidate the nature of pressure-induced chemical bond enhancement. Lastly, we have discovered pressure-controllable band gap closure while the topologically protected surface states disappear, realizing insulator-metal phase transition and topological quantum phase transition. Our research not only enriches the family of topological insulators but also provides a good platform for the study of thermoelectric properties.

13.
Front Oncol ; 12: 819244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280738

RESUMO

[This corrects the article DOI: 10.3389/fonc.2019.00491.].

14.
Cancer Immunol Immunother ; 71(7): 1549-1567, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34739560

RESUMO

Immune checkpoint inhibitors (ICIs) for programmed death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) have become preferred treatment strategies for several advanced cancers. However, response rates for these treatments are limited, which encourages the search for new ICI candidates. Recent reports have underscored significant roles of B7 homolog 3 protein (B7-H3) in tumor immunity and disease progression. While its multifaceted roles are being elucidated, B7-H3 has already entered clinical trials as a therapeutic target. In this review, we overview the recent results of clinical trials evaluating the antitumor activity and safety of B7-H3 targeting drugs. On this basis, we also discuss the challenges and opportunities arising from the application of these drugs. Finally, we point out current gaps to address in the understanding of B7-H3 function and regulation in order to fully unleash the future clinical utility of B7-H3-based therapies for the treatment of cancer.


Assuntos
Imunoterapia , Neoplasias , Antígeno B7-H1/metabolismo , Humanos , Imunoterapia/métodos , Neoplasias/terapia
15.
Cancer Immunol Res ; 10(2): 162-181, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34911739

RESUMO

Cytotoxic CD8+ T cells (CTL) are a crucial component of the immune system notable for their ability to eliminate rapidly proliferating malignant cells. However, the T-cell intrinsic factors required for human CTLs to accomplish highly efficient antitumor cytotoxicity are not well defined. By evaluating human CD8+ T cells from responders versus nonresponders to treatment with immune checkpoint inhibitors, we sought to identify key factors associated with effective CTL function. Single-cell RNA-sequencing analysis of peripheral CD8+ T cells from patients treated with anti-PD-1 therapy showed that cells from nonresponders exhibited decreased expression of the cytolytic granule-associated molecule natural killer cell granule protein-7 (NKG7). Functional assays revealed that reduced NKG7 expression altered cytolytic granule number, trafficking, and calcium release, resulting in decreased CD8+ T-cell-mediated killing of tumor cells. Transfection of T cells with NKG7 mRNA was sufficient to improve the tumor-cell killing ability of human T cells isolated from nonresponders and increase their response to anti-PD-1 or anti-PD-L1 therapy in vitro. NKG7 mRNA therapy also improved the antitumor activity of murine tumor antigen-specific CD8+ T cells in an in vivo model of adoptive cell therapy. Finally, we showed that the transcription factor ETS1 played a role in regulating NKG7 expression. Together, our results identify NKG7 as a necessary component for the cytotoxic function of CD8+ T cells and establish NKG7 as a T-cell-intrinsic therapeutic target for enhancing cancer immunotherapy.See related article by Li et al., p. 154.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia , Proteínas de Membrana , Neoplasias , RNA Mensageiro , Animais , Linfócitos T CD8-Positivos/imunologia , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Neoplasias/imunologia , Neoplasias/terapia , RNA Mensageiro/uso terapêutico , Linfócitos T Citotóxicos
16.
Cancer Lett ; 527: 127-139, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-34923044

RESUMO

Colorectal cancers (CRCs) with the BRAF V600E mutation exhibit upregulation of programmed death ligand 1 (PD-L1) but fail to respond to immunotherapy targeting programmed cell death protein 1 (PD-1)/PD-L1. Recent studies have explored the intracellular functions of PD-L1. Here, we demonstrate that PD-L1 was highly expressed in both the cytoplasm and nucleus of BRAF-mutated CRC tumor cells and tissues. Nuclear PD-L1 (nPD-L1) promoted the growth of tumor cells both in vitro and in vivo. Mechanistic investigations revealed that PD-L1 translocation into the nucleus was facilitated by the binding of p-ERK. Further, nPD-L1 upregulated the expression of cell cycle regulator BUB1 via interactions with thyroid hormone receptor-associated protein 3 (THRAP3), thereby accelerating cell cycle progression and promoting cell proliferation. Moreover, BRAF V600E-mutated CRC cells exhibited upregulation of PD-L1 expression via the transcription factor LEF-1. These findings reveal a novel role of nPD-L1, which promotes cell cycle progression in an immune-independent manner in BRAF V600E-mutated CRC. Our study provides novel insight into the mechanisms underlying BRAF V600E-mutated CRC progression.


Assuntos
Antígeno B7-H1/metabolismo , Neoplasias Colorretais/genética , Proteínas de Ligação a DNA/metabolismo , Imunoterapia/métodos , Fatores de Transcrição/metabolismo , Animais , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Progressão da Doença , Humanos , Camundongos , Transfecção
17.
J Phys Condens Matter ; 34(12)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34936997

RESUMO

In recent years, the discovery of 'magic angle' graphene has given new inspiration to the formation of heterojunctions. Similarly, the use of hexagonal boron nitride, known as white graphene, as a substrate for graphene devices has more aroused great interest in the graphene/hexagonal boron nitride heterostructure system. Based on the first principles method of density functional theory, the band structure, density of states, Mulliken population, and differential charge density of a tightly packed model of twisted graphene/hexagonal boron nitride/graphene sandwich structure have been studied. Through the establishment of heterostructure models twisted bilayer-graphene inserting hBN with different twisted angles, it was found that the band gap, Mulliken population, and charge density, exhibited specific evolution regulars with the rotation angle of the upper graphene, showing novel electronic properties and realizing metal-insulator phase transition. We find that the particular value of the twist angle at which the metal-insulator phase transition occurs and propose a rotational regulation mechanism with angular periodicity. Our results have guiding significance for the practical application of heterojunction electronic devices.

18.
Sci Rep ; 11(1): 24181, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921174

RESUMO

S14 has been identified as a potent stimulator of de novo hepatic lipogenesis (DNL) in rodents. However, it is unclear how S14 is regulated in humans with non-alcoholic fatty liver disease (NAFLD). The aim of this study was to investigate the relationship between serum S14 and liver steatosis in humans with NAFLD. A total of 614 participants were recruited from community. Liver steatosis were evaluated according to the Ultrasonographic Fatty Liver Indicator (US-FLI), which is a semi-quantitative liver ultrasound score. Anthropometric and biochemical indices were collected for further analysis. The risk of liver steatosis severity was estimated by a cumulative logistic regression model. NAFLD was found in 52.2% of the participants. The subjects with NAFLD showed higher levels of waist circumference, body mass index, insulin resistance, aspartate aminotransferase, dyslipidemia, visceral fat, serum S14 and risk of metabolic syndrome (MetS) than those of controls. Compared with the first tertile of serum S14, the odds ratios for the risk of more severe liver steatosis were 1.22 (95% confidence interval [CI]: 0.78-1.92) for those of the second tertile and 2.08 (95% CI: 1.28-3.39) for the third tertile (P for trend < 0.05) after adjusting for confounding factors. Higher serum S14 level was not only found in NAFLD subjects but also was positively correlated with the severity of liver steatosis. S14 may play an important role in the mechanism of DNL for NAFLD in humans.


Assuntos
Biomarcadores/sangue , Hepatopatia Gordurosa não Alcoólica/etiologia , Proteínas Nucleares/sangue , Fatores de Transcrição/sangue , Ultrassonografia/métodos , Adulto , Aspartato Aminotransferases/metabolismo , Biomarcadores/metabolismo , Índice de Massa Corporal , Dislipidemias/metabolismo , Feminino , Humanos , Resistência à Insulina , Gordura Intra-Abdominal/metabolismo , Fígado , Masculino , Síndrome Metabólica/metabolismo , Pessoa de Meia-Idade , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Circunferência da Cintura
19.
ACS Appl Mater Interfaces ; 13(38): 45726-45735, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34520174

RESUMO

Hydrothermal deposition is emerging as a highly potential route for antimony-based solar cells, in which the Sb2(S,Se)3 is typically in situ grown on a common toxic CdS buffer layer. The narrow band gap of CdS causes a considerable absorption in the short-wavelength region and then lowers the current density of the device. Herein, TiO2 is first evaluated as an alternative Cd-free buffer layer for hydrothermally derived Sb2S3 solar cells. But it suffers from a severely inhomogeneous Sb2S3 coverage, which is effectively eliminated by inserting a Zn(O,S) layer. The surface atom of sulfur in Zn(O,S) uniquely provides a chemical bridge to enable the quasi-epitaxial deposition of Sb2S3 thin film, confirming by both morphology and binding energy analysis using DFT. Then the results of the first-principles calculations also show that Zn(O,S)/Sb2S3 has a more stable structure than TiO2/Sb2S3. The resultant perfect Zn(O,S)/Sb2S3 junction, with a suitable band alignment and excellent interface contact, delivers a remarkably enhanced JSC and VOC for Sb2S3 solar cells. The device efficiency with the TiO2/Zn(O,S) buffer layer boosts from 0.54% to 3.70% compared with the counterpart of TiO2, which has a champion efficiency of Cd-free Sb2S3 solar cells with a structure of ITO/TiO2/Zn(O,S)/Sb2S3/Carbon/Ag by in situ hydrothermal deposition. This work provides a guideline for the hydrothermal deposition of antimony-based films upon a nontoxic buffer layer.

20.
Front Pharmacol ; 12: 670900, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489691

RESUMO

The programmed death receptor 1 (PD1) and its ligand programmed death receptor ligand 1 (PDL1) are the most widely used immune checkpoints in cancer immunotherapy. The related literature shows the explosive growth trends due to the promising outcomes of tumor regression. The present study aimed to provide a comprehensive bibliometric analysis of the literature on anti-PD1/PDL1 from three perspectives including molecular mechanisms, randomized clinical trials (RCT), and meta-analysis, thus producing a knowledge map reflecting the status of the research, its historical evolution, and developmental trends in related research from 2000 to 2020. We included 11,971, 191, and 335 documents from the Web of Science Core Collection database, respectively, and adopted various bibliometric methods and techniques thereto. The study revealed the major research themes and emergent hotspots based on literature and citation data and outlined the top contributors in terms of journals and countries. The co-occurrence overlay of keywords and terms pertaining to the PD1/PDL1 molecule reflected the progress from the discovery of the PD1/PDL1 molecule to the clinical application of anti-PD1/PDL1. Immune-related adverse events (irAEs) formed a unique cluster in the term co-occurrence analysis of meta-analysis. The historical direct citation network of RCT indicated the development and transformation of cancers and therapy strategies. irAEs and the strategies of combination therapy might become a future focus of research in this cognate area. In summary, the bibliometric study provides a general overview of the landscape on anti-PD1/PDL1 research, allowing researchers to identify the potential opportunities and challenges therein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA