Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39005346

RESUMO

Star-PAP is a noncanonical poly(A) polymerase that controls gene expression. Star-PAP was previously reported to bind the phosphatidylinositol 4-phosphate 5-kinase PIPKI⍺ and its product phosphatidylinositol 4,5-bisphosphate, which regulate Star-PAP poly(A) polymerase activity and expression of specific genes. Recent studies have revealed a nuclear PI signaling pathway in which the PI transfer proteins PITP⍺/ß, PI kinases and phosphatases bind p53 to sequentially modify protein-linked phosphatidylinositol phosphates and regulate its function. Here we demonstrate that multiple phosphoinositides, including phosphatidylinositol 4-monophosphate and phosphatidylinositol 3,4,5-trisphosphate are also coupled to Star-PAP in response to stress. This is initiated by PITP⍺/ß binding to Star-PAP, while the Star-PAP-linked phosphoinositides are modified by PI4KII⍺, PIPKI⍺, IPMK, and PTEN recruited to Star- PAP. The phosphoinositide coupling enhances the association of the small heat shock proteins HSP27/⍺B-crystallin with Star-PAP. Knockdown of the PITPs, kinases, or HSP27 reduce the expression of Star-PAP targets. Our results demonstrate that the PITPs generate Star-PAP-PIPn complexes that are then modified by PI kinases/phosphatases and small heat shock proteins that regulate the linked phosphoinositide phosphorylation and Star-PAP activity in response to stress.

2.
EMBO J ; 43(9): 1740-1769, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565949

RESUMO

The Hippo pathway effectors Yes-associated protein 1 (YAP) and its homolog TAZ are transcriptional coactivators that control gene expression by binding to TEA domain (TEAD) family transcription factors. The YAP/TAZ-TEAD complex is a key regulator of cancer-specific transcriptional programs, which promote tumor progression in diverse types of cancer, including breast cancer. Despite intensive efforts, the YAP/TAZ-TEAD complex in cancer has remained largely undruggable due to an incomplete mechanistic understanding. Here, we report that nuclear phosphoinositides function as cofactors that mediate the binding of YAP/TAZ to TEADs. The enzymatic products of phosphoinositide kinases PIPKIα and IPMK, including phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate (P(I3,4,5)P3), bridge the binding of YAP/TAZ to TEAD. Inhibiting these kinases or the association of YAP/TAZ with PI(4,5)P2 and PI(3,4,5)P3 attenuates YAP/TAZ interaction with the TEADs, the expression of YAP/TAZ target genes, and breast cancer cell motility. Although we could not conclusively exclude the possibility that other enzymatic products of IPMK such as inositol phosphates play a role in the mechanism, our results point to a previously unrecognized role of nuclear phosphoinositide signaling in control of YAP/TAZ activity and implicate this pathway as a potential therapeutic target in YAP/TAZ-driven breast cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias da Mama , Transdução de Sinais , Transativadores , Fatores de Transcrição , Proteínas de Sinalização YAP , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Feminino , Transativadores/metabolismo , Transativadores/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Linhagem Celular Tumoral , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositóis/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Núcleo Celular/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética
3.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961303

RESUMO

Reactive oxygen species (ROS) are generated by aerobic metabolism, and their deleterious effects are buffered by the cellular antioxidant response, which prevents oxidative stress. The nuclear factor erythroid 2-related factor 2 (NRF2) is a master transcriptional regulator of the antioxidant response. Basal levels of NRF2 are kept low by ubiquitin-dependent degradation of NRF2 by E3 ligases, including the Kelch-like ECH-associated protein 1 (KEAP1). Here, we show that the stability and function of NRF2 is regulated by the type I phosphatidylinositol phosphate kinase g (PIPKIg), which binds NRF2 and transfers its product phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P 2 ) to NRF2. PtdIns(4,5)P 2 binding recruits the small heat shock protein HSP27 to the complex. Silencing PIPKIg or HSP27 destabilizes NRF2, reduces expression of its target gene HO-1, and sensitizes cells to oxidative stress. These data demonstrate an unexpected role of phosphoinositides and HSP27 in regulating NRF2 and point to PIPKIg and HSP27 as drug targets to destabilize NRF2 in cancer. In brief: Phosphoinositides are coupled to NRF2 by PIPKIγ, and HSP27 is recruited and stabilizes NRF2, promoting stress-resistance.

4.
Biomolecules ; 13(10)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37892112

RESUMO

The capacity for cancer cells to metastasize to distant organs depends on their ability to execute the carefully choreographed processes of cell adhesion and migration. As most human cancers are of epithelial origin (carcinoma), the transcriptional downregulation of adherent/tight junction proteins (e.g., E-cadherin, Claudin and Occludin) with the concomitant gain of adhesive and migratory phenotypes has been extensively studied. Most research and reviews on cell adhesion and migration focus on the actin cytoskeleton and its reorganization. However, metastasizing cancer cells undergo the extensive reorganization of their cytoskeletal system, specifically in originating/nucleation sites of microtubules and their orientation (e.g., from non-centrosomal to centrosomal microtubule organizing centers). The precise mechanisms by which the spatial and temporal reorganization of microtubules are linked functionally with the acquisition of an adhesive and migratory phenotype as epithelial cells reversibly transition into mesenchymal cells during metastasis remains poorly understood. In this Special Issue of "Molecular Mechanisms Underlying Cell Adhesion and Migration", we highlight cell adhesion and migration from the perspectives of microtubule cytoskeletal reorganization, cell polarity and phosphoinositide signaling.


Assuntos
Polaridade Celular , Fosfatidilinositóis , Humanos , Adesão Celular/fisiologia , Fosfatidilinositóis/metabolismo , Movimento Celular/fisiologia , Citoesqueleto/metabolismo , Microtúbulos/metabolismo
5.
Biomolecules ; 13(9)2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37759697

RESUMO

Cytoplasmic phosphoinositides (PI) are critical regulators of the membrane-cytosol interface that control a myriad of cellular functions despite their low abundance among phospholipids. The metabolic cycle that generates different PI species is crucial to their regulatory role, controlling membrane dynamics, vesicular trafficking, signal transduction, and other key cellular events. The synthesis of phosphatidylinositol (3,4,5)-triphosphate (PI3,4,5P3) in the cytoplamic PI3K/Akt pathway is central to the life and death of a cell. This review will focus on the emerging evidence that scaffold proteins regulate the PI3K/Akt pathway in distinct membrane structures in response to diverse stimuli, challenging the belief that the plasma membrane is the predominant site for PI3k/Akt signaling. In addition, we will discuss how PIs regulate the recruitment of specific scaffolding complexes to membrane structures to coordinate vesicle formation, fusion, and reformation during autophagy as well as a novel lysosome repair pathway.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/fisiologia , Membrana Celular/metabolismo , Fosfatidilinositóis/metabolismo
6.
Nat Cell Biol ; 24(7): 1099-1113, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798843

RESUMO

The tumour suppressor p53 and PI3K-AKT pathways have fundamental roles in the regulation of cell growth and apoptosis, and are frequently mutated in cancer. Here, we show that genotoxic stress induces nuclear AKT activation through a p53-dependent mechanism that is distinct from the canonical membrane-localized PI3K-AKT pathway. Following genotoxic stress, a nuclear PI3K binds p53 in the non-membranous nucleoplasm to generate a complex of p53 and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), which recruits AKT, PDK1 and mTORC2 to activate AKT and phosphorylate FOXO proteins, thereby inhibiting DNA damage-induced apoptosis. Wild-type p53 activates nuclear AKT in an on/off fashion following stress, whereas mutant p53 dose-dependently stimulates high basal AKT activity. The p53-PtdIns(3,4,5)P3 complex is dephosphorylated to p53-phosphatidylinositol 4,5-bisphosphate by PTEN to inhibit AKT activation. The nuclear p53-phosphoinositide signalosome is distinct from the canonical membrane-localized pathway and insensitive to PI3K inhibitors currently in the clinic, which underscores its therapeutic relevance.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Proteína Supressora de Tumor p53 , Núcleo Celular/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Methods Mol Biol ; 2251: 133-142, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33481236

RESUMO

Proximity ligation assay (PLA) is a well-established method for detecting in situ interactions between two epitopes with high resolution and specificity. Notably, PLA is not only a robust method for studying protein-protein interaction but also an efficient approach to characterize and validate protein posttranslational modifications (PTM) using one antibody against the core protein and one against the PTM residue. Therefore, it could be applied as a powerful approach to detect specific interactions of endogenous phosphoinositides and their binding proteins within cells. Importantly, we have specifically detected the PLA signal between PtdIns(4,5)P2 and its binding effector p53 in the nucleus. This cutting-edge method fully complements other conventional approaches for studying phosphoinositide-protein interactions and provides important localization signals and robust quantitation of the detected interactions. Here, we present the PLA fluorescence protocol for detecting in situ phosphoinositide-protein interactions in cultured cells and is semiquantitative for interactions that are regulated by cellular signaling.


Assuntos
Fosfatos de Fosfatidilinositol/análise , Domínios e Motivos de Interação entre Proteínas/fisiologia , Mapeamento de Interação de Proteínas/métodos , Animais , Anticorpos/química , Linhagem Celular , Células Cultivadas , Fluorescência , Humanos , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo , Ligação Proteica/fisiologia , Processamento de Proteína Pós-Traducional/genética , Transporte Proteico , Proteínas/genética , Proteínas/metabolismo
8.
Nat Cell Biol ; 22(11): 1357-1370, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33139939

RESUMO

The canonical model of agonist-stimulated phosphatidylinositol-3-OH kinase (PI3K)-Akt signalling proposes that PI3K is activated at the plasma membrane, where receptors are activated and phosphatidylinositol-4,5-bisphosphate is concentrated. Here we show that phosphatidylinositol-3,4,5-trisphosphate generation and activated Akt are instead largely confined to intracellular membranes upon receptor tyrosine kinase activation. Microtubule-associated protein 4 (MAP4) interacts with and controls localization of membrane vesicle-associated PI3Kα to microtubules. The microtubule-binding domain of MAP4 binds directly to the C2 domain of the p110α catalytic subunit. MAP4 controls the interaction of PI3Kα with activated receptors at endosomal compartments along microtubules. Loss of MAP4 results in the loss of PI3Kα targeting and loss of PI3K-Akt signalling downstream of multiple agonists. The MAP4-PI3Kα assembly defines a mechanism for spatial control of agonist-stimulated PI3K-Akt signalling at internal membrane compartments linked to the microtubule network.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Endossomos/enzimologia , Proteínas Associadas aos Microtúbulos/metabolismo , Transdução de Sinais , Animais , Células COS , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Chlorocebus aethiops , Classe I de Fosfatidilinositol 3-Quinases/genética , Endossomos/efeitos dos fármacos , Ativação Enzimática , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/agonistas , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Insulina/farmacologia , Proteínas Associadas aos Microtúbulos/genética , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Cell Cycle ; 19(3): 268-289, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31902273

RESUMO

Accumulating evidence reveals that nuclear phosphoinositides (PIs) serve as central signaling hubs that control a multitude of nuclear processes by regulating the activity of nuclear proteins. In response to cellular stressors, PIs accumulate in the nucleus and multiple PI isomers are synthesized by the actions of PI-metabolizing enzymes, kinases, phosphatases and phospholipases. By directly interacting with effector proteins, phosphoinositide signals transduce changes in cellular functions. Here we describe nuclear phosphoinositide signaling in multiple sub-nuclear compartments and summarize the literature that demonstrates roles for specific kinases, phosphatases, and phospholipases in the orchestration of nuclear phosphoinositide signaling in response to cellular stress. Additionally, we discuss the specific PI-protein complexes through which these lipids execute their functions by regulating the configuration, stability, and transcription activity of their effector proteins. Overall, our review provides a detailed landscape of the current understanding of the nuclear PI-protein interactome and its role in shaping the coordinated response to cellular stress.


Assuntos
Núcleo Celular/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis/metabolismo , Fosfatases de Fosfoinositídeos/metabolismo , Estresse Fisiológico/genética , Animais , Núcleo Celular/enzimologia , Humanos , Proteínas Nucleares/metabolismo , Transdução de Sinais/genética
10.
Sci Rep ; 9(1): 9126, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235839

RESUMO

Epidermal growth factor receptor (EGFR) and its downstream phosphoinositide 3-kinase (PI3K) pathway are commonly deregulated in cancer. Recently, we have shown that the IQ motif-containing GTPase-activating protein 1 (IQGAP1) provides a molecular platform to scaffold all the components of the PI3K-Akt pathway and results in the sequential generation of phosphatidylinositol-3,4,5-trisphosphate (PI3,4,5P3). In addition to the PI3K-Akt pathway, IQGAP1 also scaffolds the Ras-ERK pathway. To define the specificity of IQGAP1 for the control of PI3K signaling, we have focused on the IQ3 motif in IQGAP1 as PIPKIα and PI3K enzymes bind this region. An IQ3 deletion mutant loses interactions with the PI3K-Akt components but retains binding to ERK and EGFR. Consistently, blocking the IQ3 motif of IQGAP1 using an IQ3 motif-derived peptide mirrors the effect of IQ3 deletion mutant by reducing Akt activation but has no impact on ERK activation. Also, the peptide disrupts the binding of IQGAP1 with PI3K-Akt pathway components, while IQGAP1 interactions with ERK and EGFR are not affected. Functionally, deleting or blocking the IQ3 motif inhibits cell proliferation, invasion, and migration in a non-additive manner to a PIPKIα inhibitor, establishing the functional specificity of IQ3 motif towards the PI3K-Akt pathway. Taken together, the IQ3 motif is a specific target for suppressing activation of the PI3K-Akt but not the Ras-ERK pathway. Although EGFR stimulates the IQGAP1-PI3K and -ERK pathways, here we show that IQGAP1-PI3K controls migration, invasion, and proliferation independent of ERK. These data illustrate that the IQ3 region of IQGAP1 is a promising therapeutic target for PI3K-driven cancer.


Assuntos
Fator de Crescimento Epidérmico/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Ativadoras de ras GTPase/química , Proteínas Ativadoras de ras GTPase/metabolismo , Motivos de Aminoácidos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/metabolismo , Humanos , Invasividade Neoplásica , Deleção de Sequência , Proteínas Ativadoras de ras GTPase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA