Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 10(6): uhad089, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37334179

RESUMO

The yellowing of leaves caused by the decomposition of chlorophyll (Chl) is a characteristic event during senescence, which can be induced by various environmental stresses. However, the molecular mechanisms of high temperature-induced Chl degradation in horticultural plants remain poorly understood. Here, we found that heat stress induced Chl degradation and the expression of ABI5 and MYB44 in cucumber. Silencing of ABI5 compromised heat stress-induced Chl degradation, and the transcription of pheophytinase (PPH) and pheophorbide a oxygenase (PAO), two key genes in Chl catabolic pathway, but silencing of MYB44 exhibited the opposite results. Furthermore, ABI5 interacted with MYB44 in vitro and in vivo. ABI5 positively regulated heat stress-induced Chl degradation through two pathways. ABI5 directly bound to PPH and PAO promoters to promote their expression, leading to accelerating Chl degradation. On the other hand, the interaction between ABI5 and MYB44 reduced the binding of MYB44 to PPH and PAO promoters and led to the ubiquitination-depended protein degradation of MYB44, thereby alleviating the transcription inhibitory effect of MYB44 on PPH and PAO. Taken together, our findings propose a new regulatory network for ABI5 in regulating heat stress-induced Chl degradation.

2.
BMC Plant Biol ; 21(1): 48, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33461504

RESUMO

BACKGROUND: Despite significant limitations of growth medium reuse, a large amount of organic substrate is reused in soilless cultivation of horticultural crops in China. Arbuscular mycorrhizal fungi (AMF) can promote nutrient absorption and improve plant tolerance to biotic and abiotic stresses. However, the mechanisms governing the effects of AMF on crop growth in organic continuous cropping substrates have not been elucidated. RESULTS: In this study, we showed that the inoculation of AMF in continuous cropping substrates promoted growth and root development, and increased the root and NADP-malic enzyme (NADP-ME) activity of tomato seedlings. Root transcriptome analysis demonstrated that the plant hormone signal transduction pathway was highly enriched, and 109 genes that positively correlated with the AMF-inoculated plant phenotype were obtained by gene set enrichment analysis (GSEA), which identified 9 genes related to indole acetic acid (IAA). Importantly, the levels of endogenous IAA in tomato seedlings significantly increased after AMF inoculation. Furthermore, the application of AMF significantly increased the expression levels of NADP-ME1 and NADP-ME2, as well as the activity of NADP-ME, and enhanced the root activity of tomato seedlings in comparison to that observed without inoculation of AMF. However, these effects were blocked in plants treated with 2,3,5-triiodobenzoic acid (TIBA), a polar transport inhibitor of IAA. CONCLUSIONS: These results suggest that IAA mediates the AMF-promoted tomato growth and expression of NADP-MEs in continuous cropping substrates. The study provides convincing evidence for the reuse of continuous cropping substrates by adding AMF as an amendment.


Assuntos
Ácidos Indolacéticos/metabolismo , Malato Desidrogenase/metabolismo , Micorrizas/fisiologia , Raízes de Plantas/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Agricultura/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Ácidos Indolacéticos/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Fotossíntese , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia
3.
Autophagy ; 17(10): 2876-2890, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33172324

RESUMO

Autophagy, an evolutionally conserved cellular degradation process, plays critical roles in plant development and stress response. Despite the wealth of information on the vital role of autophagy in responses to environmental stresses, little is known about the regulation of autophagy. In this study, we demonstrated that spermidine (Spd), a kind of polyamine, was involved in the regulation of salt tolerance through activating the expression of ATG (autophagy-related) genes and the formation of autophagosomes in cucumber under salt stress. Furthermore, NADPH oxidase-derived apoplastic H2O2-mediated Spd-induced salt tolerance and autophagy. Exogenous Spd significantly increased the tolerance to salt stress and inhibited the accumulation and ubiquitination of insoluble proteins. Foliar application of Spd promoted the transcript levels of ATG genes and autophagosomes formation. Besides, Spd induced the expression of RBOH (respiratory burst oxidase homolog), and the accumulation of H2O2 both in leaves and roots. However, either pretreatment with dimethylthiourea (DMTU, an H2O2 scavenger) or diphenyleneiodonium chloride (DPI, an inhibitor of NADPH oxidase) reduced Spd-induced accumulation of apoplastic H2O2. Importantly, Spd-induced salt tolerance and autophagy were compromised when plants were pretreated with DMTU or DPI. Furthermore, the silencing of ATG4 and ATG7 reduced Spd-induced salt tolerance and autophagosomes formation. Taken together, these results revealed that RBOH-dependent H2O2 mediated the Spd-induced autophagy and salt tolerance in cucumber.Abbreviations: Asat: light-saturated rate of CO2 assimilation; ATG: autophagy-related; DCF-DA: 2, 7-dichlorofluorescein diacetate; DMTU: dimethylthiourea; DPI: diphenyleneiodonium chloride; DW: dry weight; EL: electrolyte leakage; FW: fresh weight; Fv/Fm: the maximum quantum yield of photosystem II; GFP: green fluorescent protein; MDC: monodansylcadaverine; PDS: phytoene desaturase; PE: phosphatidylethanolamine; PLD: phospholipase D; RBOH: respiratory burst oxidase homolog; ROS: reactive oxygen species; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SIN1: salt induced NAC1; Spd: spermidine; TOR: target of rapamycin; VIGS: virus-induced gene silencing.


Assuntos
Cucumis sativus , Autofagia/genética , Cucumis sativus/genética , Cucumis sativus/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Salino , Espermidina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...