Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Physiol Mol Biol Plants ; 30(4): 559-570, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38737325

RESUMO

Sweet cherry (Prunus avium L.) is one of the most economically important fruits in the world. However, severe fruit abscission has brought significant challenges to the cherry industry. To better understand the molecular regulation mechanisms underlying excessive fruit abscission in sweet cherry, the fruit abscission characteristics, the anatomical characteristics of the abscission zone (AZ), as well as a homeodomain-Leucine Zipper gene family member PavHB16 function were analyzed. The results showed that the sweet cherry exhibited two fruit abscission peak stages, with the "Brooks" cultivar demonstrating the highest fruit-dropping rate (97.14%). During these two fruit abscission peak stages, both the retention pedicel and the abscising pedicel formed AZs. but the AZ in the abscising pedicel was more pronounced. In addition, a transcription factor, PavHB16, was identified from sweet cherry. The evolutionary analysis showed that there was high homology between PavHB16 and AtHB12 in Arabidopsis. Moreover, the PavHB16 protein was localized in the nucleus. Overexpression of PavHB16 in Arabidopsis accelerated petal shedding. In the PavHB16-overexpressed lines, the AZ cells in the pedicel became smaller and denser, and the expression of genes involved in cell wall remodeling, such as cellulase 3 gene (AtCEL3), polygalacturonase 1 (AtPG1), and expandin 24(AtEXPA24) were upregulated. The results suggest that PavHB16 may promote the expression of genes related to cell wall remodeling, ultimately facilitating fruit abscission. In summary, this study cloned the sweet cherry PavHB16 gene and confirmed its function in regulating sweet cherry fruit abscission, which provided new data for further study on the fruit abscission mechanism. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01443-8.

2.
Gene ; 904: 148164, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38224923

RESUMO

C2H2-type zinc finger proteins are one of the most widely studied families in plants and play important roles in abiotic stress responses. In the present study, the physicochemical properties, chromosomal locations, evolutionary relationships, and gene structures of 54 C2H2 zinc finger protein (ZFP) family members were analyzed in apple. The MdC2H2-ZFP genes were phylogenetically clustered into seven subfamilies distributed in different densities on 16 chromosomes. The RNA-seq data from various tissues revealed that MdC2H2-ZFPs differentially expressed among root, stem, leaf, flower, and fruits. Quantitative analysis of its expression characteristics showed that the MdC2H2-ZFP genes were rapidly induced as exposure to abiotic stresses such as drought, salt and low temperature etc. Under drought stress, the expression of eight members was significantly up-regulated, and the highest was obtained from MdC2H2-17; as exposure to salt stress, nine MdC2H2-ZFPs was obviously up-regulated, with the highest expression of MdC2H2-13; and under low temperature stress, the expression of seven members was highly up-regulated, and MdC2H2-13 also demonstrated the highest expression which is same as the case under salt stress. Therefore, some members of MdC2H2-ZFP gene family considerably involve in the multiple abiotic stress responses, which may better understand the function of this family and facilitate the breeding of apple for stress tolerance.


Assuntos
Dedos de Zinco CYS2-HIS2 , Malus , Dedos de Zinco CYS2-HIS2/genética , Malus/genética , Malus/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Estresse Fisiológico/genética , Filogenia , Dedos de Zinco/genética
3.
Plant Cell Rep ; 43(1): 7, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133822

RESUMO

KEY MESSAGE: Sweet cherry PavbHLH106 was up-regulated under cold induction and overexpressed to enhance the cold resistance in tobacco by mediating the scavenging of ROS through increasing of antioxidant enzyme activity. Sweet cherry (Prunus avium L.) is an economically important fruit. Chilling requirements are critical during dormancy, but abnormally low temperatures unfavorably affect fruit growth and development. Differences were found in the transcript level of PavbHLH106 under salt, dehydration, and low-temperature treatments, especially in response to cold stress, suggesting that this gene is involved in the regulation of different abiotic stresses. PavbHLH106 is homologous to Arabidopsis thaliana AtbHLH106 with a conserved bHLH domain, and transient expression in tobacco suggests that the protein is localized in the nucleus and has transcriptional activity in yeast. The PavbHLH106 overexpression in tobacco resulted in weaker electrolyte leakages, lower malondialdehyde, and higher proline content than the wild type at low-temperature treatment. Reactive oxygen species accumulation was significantly reduced in the overexpressed lines, negatively correlated with the antioxidant enzyme activity. In addition, overexpression of PavbHLH106 delayed the germination of tobacco seeds and promoted plant growth. Resistance-related genes were expressed more in the overexpressed plants compared to the wild type. PavbHLH106 bound to the PavACO promoter in yeast and potentially interacted with a bHLH162-like transcription factor. These results indicate that PavbHLH106 has various functions and is particularly active in controlling low-temperature stress.


Assuntos
Arabidopsis , Prunus avium , Resposta ao Choque Frio/genética , Prunus avium/genética , Prunus avium/metabolismo , Antioxidantes , Saccharomyces cerevisiae/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo
4.
Plant Methods ; 19(1): 135, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012623

RESUMO

BACKGROUND: Calcium oxalate (CaOx) is the most prevalent and widespread biomineral in plants and is involved in protective and/or defensive functions against abiotic stress factors. It is, however, expected that this function has an extremely significant contribution to growth processes in plants bearing large amounts of CaOx, such as cacti growing in desert environment. RESULTS: In our research, small-sized CaOx crystals (≤ 20 µm) with tetrahedral or spherical shapes were observed to dominate in each epidermal and cortical cell from the tubercles of Mammillaria schumannii, a species from the Cereoideae subfamily, having tubercles (main photosynthetic organs) united with adjacent ones almost into ridges on its stem. Because they have potential significant functions, differential centrifugations after mechanical blending were used to obtain these small-sized CaOx crystals, which extremely tend to adhere to tissue or suspend in solution. And then the combined Scanning Electron Microscope Energy Dispersive System (SEM-EDS) and Raman spectroscopy were further performed to demonstrate that the extracted crystals were mainly CaC2O4·2H2O. Interestingly, spherical druses had 2 obvious abnormal Raman spectroscopy peaks of -CH and -OH at 2947 and 3290 cm-1, respectively, which may be attributed to the occluded organic matrix. The organic matrix was further extracted from spherical crystals, which could be polysaccharide, flavone, or lipid compounds on the basis of Raman spectroscopy bands at 2650, 2720, 2770, and 2958 cm-1. CONCLUSIONS: Here we used a highlightedly improved method to effectively isolate small-sized CaOx crystals dominating in the epidermal and cortical cells from tubercles of Mammillaria schumannii, which extremely tended to adhere plant tissues or suspend in isolation solution. And then we further clarified the organic matrix getting involved in the formation of CaOx crystals. This improved method for isolating and characterizing biomineral crystals can be helpful to understand how CaOx crystals in cacti function against harsh environments such as strong light, high and cold temperature, and aridity.

5.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37762116

RESUMO

Masson pine (Pinus massoniana Lamb.) is an important resin-producing conifer species in China. Resin yield is a highly heritable trait and varies greatly among different genotypes. However, the mechanisms regulating the resin yield of masson pine remain largely unknown. In this study, physiological, proteomic, and gene expression analysis was performed on xylem tissues of masson pine with high and low resin yield. Physiological investigation showed that the activity of terpene synthase, as well as the contents of soluble sugar, jasmonic acid (JA), methyl jasmonate (MeJA), gibberellins (GA1, GA4, GA9, GA19, and GA20), indole-3-acetic acid (IAA), and abscisic acid (ABA) were significantly increased in the high yielder, whereas sucrose and salicylic acid (SA) were significantly decreased compared with the low one. A total of 2984 differentially expressed proteins (DEPs) were identified in four groups, which were mainly enriched in the biosynthesis of secondary metabolites, protein processing in the endoplasmic reticulum, carbohydrate metabolism, phytohormone biosynthesis, glutathione metabolism, and plant-pathogen interaction. Integrated physiological and proteomic analysis revealed that carbohydrate metabolism, terpenoid biosynthesis, resistance to stress, as well as JA and GA biosynthesis and signaling, play key roles in regulating resin yield. A series of proteins associated with resin yield, e.g., terpene synthase proteins (TPSs), ATP-binding cassette transporters (ABCs), glutathione S-transferase proteins (GSTs), and heat shock proteins (HSPs), were identified. Resin yield-related gene expression was also associated with resin yield. Our study unveils the implicated molecular mechanisms regulating resin yield and is of pivotal significance to breeding strategies of high resin-yielding masson pine cultivars.


Assuntos
Melhoramento Vegetal , Proteômica , Transportadores de Cassetes de Ligação de ATP , Perfilação da Expressão Gênica
6.
Sci Rep ; 13(1): 15629, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37731009

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. The pathological hallmark of PD is the appearance of intraneuronal cytoplasmic α-synuclein (α-Syn) aggregation, called Lewy bodies. α-Syn aggregation is deeply involved in the pathogenesis of PD. Oxidative stress is also associated with the progression of PD. In the present study, to investigate whether a hypoxia-inducible factor (HIF)-prolyl hydroxylase (PH) inhibitor, FG-4592 (also called roxadustat), has neuroprotective effects against α-Syn-induced neurotoxicity, we employed a novel α-Syn stably expressing cell line (named α-Syn-N2a cells) utilizing a piggyBac transposon system. In α-Syn-N2a cells, oxidative stress and cell death were induced by α-Syn, and FG-4592 showed significant protection against this neurotoxicity. However, FG-4592 did not affect α-Syn protein levels. FG-4592 triggered heme oxygenase-1 (HO-1) expression downstream of HIF-1α in a concentration-dependent manner. In addition, FG-4592 decreased the production of reactive oxygen species possibly via the activation of HO-1 and subsequently suppressed α-Syn-induced neurotoxicity. Moreover, FG-4592 regulated mitochondrial biogenesis and respiration via the induction of the peroxisome proliferator-activated receptor-γ coactivator-1α. As FG-4592 has various neuroprotective effects against α-Syn and is involved in drug repositioning, it may have novel therapeutic potential for PD.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Inibidores de Prolil-Hidrolase , Humanos , Prolil Hidroxilases , alfa-Sinucleína , Fármacos Neuroprotetores/farmacologia , Pró-Colágeno-Prolina Dioxigenase , Doença de Parkinson/tratamento farmacológico , Estresse Oxidativo , Glicina , Hipóxia
7.
Plants (Basel) ; 12(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37570972

RESUMO

Fluorescence in situ hybridization (FISH) is an indispensable technique for studying chromosomes in plants. However, traditional FISH methods, such as BAC, rDNA, tandem repeats, and distributed repetitive sequence probe-based FISH, have certain limitations, including difficulties in probe synthesis, low sensitivity, cross-hybridization, and limited resolution. In contrast, oligo-based FISH represents a more efficient method for chromosomal studies in plants. Oligo probes are computationally designed and synthesized for any plant species with a sequenced genome and are suitable for single and repetitive DNA sequences, entire chromosomes, or chromosomal segments. Furthermore, oligo probes used in the FISH experiment provide high specificity, resolution, and multiplexing. Moreover, oligo probes made from one species are applicable for studying other genetically and taxonomically related species whose genome has not been sequenced yet, facilitating molecular cytogenetic studies of non-model plants. However, there are some limitations of oligo probes that should be considered, such as requiring prior knowledge of the probe design process and FISH signal issues with shorter probes of background noises during oligo-FISH experiments. This review comprehensively discusses de novo oligo probe synthesis with more focus on single-copy DNA sequences, preparation, improvement, and factors that affect oligo-FISH efficiency. Furthermore, this review highlights recent applications of oligo-FISH in a wide range of plant chromosomal studies.

8.
J Genet Genomics ; 50(6): 410-421, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36608932

RESUMO

Citrus sinensis is the most cultivated and economically valuable Citrus species in the world, whose genome has been assembled by three generation sequencings. However, chromosome recognition remains a problem due to the small size of chromosomes, and difficulty in differentiating between pseudo and real chromosomes because of a highly heterozygous genome. Here, we employ fluorescence in situ hybridization (FISH) with 9 chromosome painting probes, 30 oligo pools, and 8 repetitive sequences to visualize 18 chromosomes. Then, we develop an approach to identify each chromosome in one cell through single experiment of oligo-FISH and Chromoycin A3 (CMA) staining. By this approach, we construct a high-resolution molecular cytogenetic map containing the physical positions of CMA banding and 38 sequences of FISH including centromere regions, which enables us to visualize significant differences between homologous chromosomes. Based on the map, we locate several highly repetitive sequences on chromosomes and estimate sizes and copy numbers of each site. In particular, we discover the translocation regions of chromosomes 4 and 9 in C. sinensis "Valencia." The high-resolution molecular cytogenetic map will help improve understanding of sweet orange genome assembly and also provide a fundamental reference for investigating chromosome evolution and chromosome engineering for genetic improvement in Citrus.


Assuntos
Citrus sinensis , Citrus , Citrus sinensis/genética , Hibridização in Situ Fluorescente , Citrus/genética , Translocação Genética/genética , Cromossomos de Plantas/genética
9.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36555203

RESUMO

Flower bud differentiation is crucial to reproductive success in plants. In the present study, RNA-Seq and nutrients quantification were used to identify the stage-specific genes for flower bud differentiation with buds which characterize the marked change during flower bud formation from a widely grown Chinese cherry (Prunus pseudocerasus L.) cultivar 'Manaohong'. A KEGG enrichment analysis revealed that the sugar metabolism pathways dynamically changed. The gradually decreasing trend in the contents of total sugar, soluble sugar and protein implies that the differentiation was an energy-consuming process. Changes in the contents of D-glucose and sorbitol were conformed with the gene expression trends of bglX and SORD, respectively, which at least partially reflects a key role of the two substances in the transition from physiological to morphological differentiation. Further, the WRKY and SBP families were also significantly differentially expressed during the vegetative-to-reproductive transition. In addition, floral meristem identity genes, e.g., AP1, AP3, PI, AGL6, SEP1, LFY, and UFO demonstrate involvement in the specification of the petal and stamen primordia, and FPF1 might promote the onset of morphological differentiation. Conclusively, the available evidence justifies the involvement of sugar metabolism in the flower bud differentiation of Chinese cherry, and the uncovered candidate genes are beneficial to further elucidate flower bud differentiation in cherries.


Assuntos
Perfilação da Expressão Gênica , Prunus , Carboidratos , Flores/genética , Regulação da Expressão Gênica de Plantas , Prunus/genética , Açúcares , Transcriptoma
10.
J Cardiothorac Surg ; 17(1): 281, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333814

RESUMO

BACKGROUND: Thoracoscopic segmentectomy is a common surgical procedure in thoracic surgery today. However, identifying the intersegmental plane is difficult in the surgical process. Therefore, we evaluated the feasibility of the arterial ligation method for determining the intersegmental plane and compared the demarcation status with the intravenous indocyanine green (ICG). METHODS: We retrospectively reviewed the records of 35 patients with peripheral small lung nodules who underwent thoracoscopic segmentectomy between May and December 2020. First, the preoperative three-dimensional reconstruction was performed to distinguish the location of lung nodules and the anatomical structures of targeted segmental arteries, veins, and bronchi. Second, the targeted segmental arteries were ligated, and the intersegmental plane was determined by the inflation-deflation technique. The waiting time for the appearance of the inflation-deflation line was recorded. Thirdly, the intersegmental plane was identified again using the ICG fluorescence method. Finally, the consistency of the two intersegmental planes was evaluated. RESULTS: The intersegmental planes were successfully observed in all patients using the arterial ligation method. Thirty-four patients underwent segmentectomy as planned, and one patient finally underwent lobectomy due to insufficient surgical margin. The waiting time for the appearance of the intersegmental plane by arterial ligation method was 13.7 ± 3.2 min (6-19 min). The intersegmental planes determined by the arterial ligation method and the ICG fluorescence method were comparable, with a maximum distance of no more than 5 mm between the two planes. The mean operative duration was 119.1 ± 34.9 min, and the mean blood loss was 76.9 ± 70.3 ml. No evident air leakage was found during the operation. Only one patient experienced a prolonged air leak (≥ 5 days) during the postoperative recovery. No atelectasis occurred in all cases. The chest tube duration was 3.1 ± 0.9 days. CONCLUSION: The arterial ligation method can efficiently and accurately identify the intersegmental plane, comparable to the ICG fluorescence method.


Assuntos
Neoplasias Pulmonares , Pneumonectomia , Humanos , Pneumonectomia/métodos , Neoplasias Pulmonares/cirurgia , Estudos Retrospectivos , Verde de Indocianina , Tubos Torácicos
11.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232722

RESUMO

Masson pine (Pinus massoniana L.) is one of the most important resin-producing tree species in southern China. However, the molecular regulatory mechanisms of resin yield are still unclear in masson pine. In this study, an integrated analysis of transcriptome, proteome, and biochemical characteristics from needles of masson pine with the high and common resin yield was investigated. The results showed that chlorophyll a (Chl a), chlorophyll b (Chl b), total chlorophyll (Chl C), carotenoids (Car), glucose (Glu), gibberellin A9 (GA9), gibberellin A15 (GA15), and gibberellin A53 (GA53) were significantly increased, whereas fructose (Fru), jasmonic acid (JA), jasmonoyl-L-isoleucine (JA-ILE), gibberellin A1 (GA1), gibberellin A3 (GA3), gibberellin A19 (GA19), and gibberellin A24 (GA24) were significantly decreased in the high resin yield in comparison with those in the common one. The integrated analysis of transcriptome and proteome showed that chlorophyll synthase (chlG), hexokinase (HXK), sucrose synthase (SUS), phosphoglycerate kinase (PGK), dihydrolipoamide dehydrogenase (PDH), dihydrolipoamide succinyltransferase (DLST), 12-oxophytodienoic acid reductase (OPR), and jasmonate O-methyltransferases (JMT) were consistent at the transcriptomic, proteomic, and biochemical levels. The pathways of carbohydrate metabolism, terpenoid biosynthesis, photosynthesis, and hormone biosynthesis may play crucial roles in the regulation of resin yield, and some key genes involved in these pathways may be candidates that influence the resin yield. These results provide insights into the molecular regulatory mechanisms of resin yield and also provide candidate genes that can be applied for the molecular-assisted selection and breeding of high resin-yielding masson pine.


Assuntos
Giberelinas , Pinus , Carotenoides/metabolismo , Clorofila A/metabolismo , Ciclopentanos , Di-Hidrolipoamida Desidrogenase/metabolismo , Frutose/metabolismo , Giberelinas/metabolismo , Glucose/metabolismo , Hexoquinase/metabolismo , Hormônios/metabolismo , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Redes e Vias Metabólicas , Metiltransferases/metabolismo , Oxilipinas , Fosfoglicerato Quinase/metabolismo , Pinus/genética , Pinus/metabolismo , Melhoramento Vegetal , Proteoma/genética , Proteoma/metabolismo , Proteômica , Resinas Vegetais , Transcriptoma
12.
Medicine (Baltimore) ; 101(36): e30302, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36086722

RESUMO

OBJECTIVES: Investigating the efficacy and safety of noninvasive cerebellar stimulation in improving the balance and walking function of patients with stroke. METHODS: We searched 7 databases for randomized controlled trials (RCTs) related to noninvasive cerebellar stimulation in the treatment of stroke. The Berg Balance Scale (BBS), 6-minute walk test (6MWT), and Barthel Index (BI) were used as the outcome indexes to evaluate balance, walking and activities of daily living (ADL). The quality of the research was evaluated using the Cochrane Risk of Bias Tool. A meta-analysis was performed to evaluate the difference between the noninvasive cerebellar stimulation and control groups. Heterogeneity tests were performed to assess differences in treatment effects across noninvasive cerebellar stimulation modalities. A sensitivity analysis was performed to evaluate the robustness of the results. RESULTS: Seven studies were included, and 5 articles (71.43%) were rated as having a low risk of bias. Among the primary outcome indicators, 4 of the 7 articles were combined into the fixed effect model (I2 = 38%, P = .18). Compared with the control group, noninvasive cerebellar stimulation improved the BBS score, and the difference was statistically significant (mean difference [MD]: 3.00, 95% confidence interval [CI]: 1.10-5.40, P = .03); the sensitivity analysis showed that the statistical model was still stable after sequentially eliminating each article. Compared with the control group, noninvasive cerebellar stimulation improved the 6MWT results of patients with stroke (MD: 25.29, 95% CI: 4.86-45.73, P = .02). However, noninvasive cerebellar stimulation did not improve the BI (MD: 15.61, 95% CI: -7.91 to 39.13, P = .19). No safety problems or adverse reactions to noninvasive cerebellar stimulation were observed. CONCLUSIONS: Noninvasive cerebellar stimulation improves balance and walking function of patients with stroke, but its effect on ADL is uncertain. Due to the methodological weaknesses in the included trials, more RCTs are needed to confirm our conclusions.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Atividades Cotidianas , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Acidente Vascular Cerebral/terapia , Reabilitação do Acidente Vascular Cerebral/métodos , Caminhada
13.
J Biomed Nanotechnol ; 18(3): 740-746, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35715926

RESUMO

The pshHIF-1α3 stealth nanospheres have been studied if they have the function of arterial targeted drug delivery to provide a new arterial targeted drug delivery method for interventional therapy of lung cancer. The study is also aimed at exploring therapeutic effect of the checked drug delivery on lung cancer. The tested groups were designed as follows: Group I: blank control group (pulmonary artery perfusion of 0.5 mL 0.9% saline); group II: tail vein injection of pshHIF-1α3 nano-microsphere; group III: pshHIF-1α3 nano-microsphere pulmonary artery perfusion group. In vitro experiment assessed the effects of pulmonary artery perfusion of pshHIF-1α3 nanospheres on proliferation, apoptosis and colony forming ability of lung cancer A549 cells, which were all evaluated by using MTT method, flow cytometry and colony formation experiments, respectively. In vivo experiment tumor xenotransplantation was used to observe the effect of pulmonary artery perfusion of pshHIF-1α3 nanospheres on treatment of lung cancer. Both the In vivo pulmonary artery perfusion experiment and In vitro experiments in A549 cells confirmed that the pulmonary artery perfusion of pshHIF-1α3 nano-microspheres can inhibit the proliferation of lung cancer tissues and cells, promoting apoptosis and inhibiting migration, leading to enhanced therapeutic effect of lung cancer. One of characteristics of nanomaterials is their large surface area, high dispersion, specific adhesion, tumor-specific affinity and adhesion, thereby prolonging their circulation time in the body. Through aggregation of nanodrug delivery system in tumor cells, the local concentration of the drug is increased, thereby improving selectivity of chemotherapeutic drugs. The results from this study therefore suggest that pulmonary artery perfusion of pshHIF-1α3 may be used in arterial targeted drug delivery for treatment of lung cancer, providing a new and efficient targeted drug delivery arterial route for interventional therapy of lung cancer.


Assuntos
Neoplasias Pulmonares , Artéria Pulmonar , Animais , Hipóxia , Neoplasias Pulmonares/tratamento farmacológico , Plasmídeos , Artéria Pulmonar/patologia , RNA Interferente Pequeno/genética , Ratos
14.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563283

RESUMO

Phosphorus (Pi) is a macronutrient essential for plant growth, development, and reproduction. However, there is not an efficient available amount of Pi that can be absorbed by plants in the soil. Previously, an elite line, MSDZ 109, selected from Malus mandshurica, was justified for its excellent tolerance to low phosphorus (low-Pi) stress. To date, however, the genes involved in low-Pi stress tolerance have not yet been unraveled in this species. Currently, the physiological responses of this line for different days to low-Pi stress were characterized, and their roots as well as leaves were used to carry out transcriptome analysis, so as to illuminate the potential molecular pathways and identify the genes involved in low-Pi stress-response. After exposure to low-Pi treatment (32 µmol/L KH2PO4) for 20 day after treatment (DAF) the biomass of shoots was significantly reduced in comparison with that of the stress-free (control), and root architecture diversely changed. For example, the root growth parameters e.g., length, surface area, and total volume somewhat increase in comparison with those of the control. The activity of acid phosphatase (ACP) increased with the low-Pi treatment, whereas the photosynthetic rate and biomass were declining. The activity of antioxidant enzymes, e.g., superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), were substantially elevated in response to low-Pi treatment. Many enzyme-related candidate genes e.g., MmCAT1, MmSOD1 and MmPOD21 were up-regulated to low-Pi treatment. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the processes of photosynthesis, plant hormone signal transduction, and MAPK signaling pathway were affected in the low-Pi response. In combination with the physiological characterization, several low-Pi-responsive genes, e.g., PHT, PHO, were identified, and the genes implicated in Pi uptake and transport, such as MmPHT1;5, MmPHO1, MmPAP1, etc., were also obtained since their expression status varied among the exposure times, which probably notifies the candidates involved in low-Pi-responsive tolerance in this line. Interestingly, low-Pi treatment activated the expression of transcription factors including the WRKY family, MYB family, etc. The available evidences will facilitate a better understanding of the roles of this line underlying the high tolerance to low-Pi stress. Additionally, the accessible data are helpful for the use of the apple rootstock M. mandshurica under low-Pi stress.


Assuntos
Malus , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Malus/genética , Fósforo/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estresse Fisiológico/genética , Transcriptoma
15.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34768913

RESUMO

Aggregation of α-synuclein (α-Syn) is implicated in the pathogenesis of Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Therefore, the removal of α-Syn aggregation could lead to the development of many new therapeutic agents for neurodegenerative diseases. In the present study, we succeeded in generating a new α-Syn stably expressing cell line using a piggyBac transposon system to investigate the neuroprotective effect of the flavonoid kaempferol on α-Syn toxicity. We found that kaempferol provided significant protection against α-Syn-related neurotoxicity. Furthermore, kaempferol induced autophagy through an increase in the biogenesis of lysosomes by inducing the expression of transcription factor EB and reducing the accumulation of α-Syn; thus, kaempferol prevented neuronal cell death. Moreover, kaempferol directly blocked the amyloid fibril formation of α-Syn. These results support the therapeutic potential of kaempferol in diseases such as synucleinopathies that are characterized by α-Syn aggregates.


Assuntos
Amiloide/efeitos dos fármacos , Autofagia , Quempferóis/farmacologia , Neuroblastoma/tratamento farmacológico , Síndromes Neurotóxicas/tratamento farmacológico , Substâncias Protetoras/farmacologia , alfa-Sinucleína/toxicidade , Amiloide/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Neuroblastoma/etiologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia
16.
Int J Mol Sci ; 22(21)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34769398

RESUMO

Auxin response factors (ARFs) play a vital role in plant growth and development. In the current study, 16 ARF members have been identified in the sweet cherry (Prunus avium L.) genome. These genes are all located in the nucleus. Sequence analysis showed that genes in the same subgroup have similar exon-intron structures. A phylogenetic tree has been divided into five groups. The promoter sequence includes six kinds of plant hormone-related elements, as well as abiotic stress response elements such as low temperature or drought. The expression patterns of PavARF in different tissues, fruitlet abscission, cold and drought treatment were comprehensively analyzed. PavARF10/13 was up-regulated and PavARF4/7/11/12/15 was down-regulated in fruitlet abscising. These genes may be involved in the regulation of fruit drop in sweet cherry fruits. This study comprehensively analyzed the bioinformatics and expression pattern of PavARF, which can lay the foundation for further understanding the PavARF family in plant growth development and fruit abscission.


Assuntos
Frutas/metabolismo , Genoma de Planta , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Prunus avium/metabolismo , Elementos de Resposta , Estresse Fisiológico , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Prunus avium/genética , Prunus avium/crescimento & desenvolvimento
17.
Front Cardiovasc Med ; 8: 730155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34708086

RESUMO

Objective: The purpose of this review was to evaluate the effect of exercise therapy on anxiety and depression symptoms in patients with coronary heart disease (CHD). Methods: A systematic review of papers published between January 2000 and February 2021 was conducted. MEDLINE, Embase, the Cochrane Library and Web of Science were searched. Meta-analysis was used to compare the results of the included studies. Bias risk assessment was performed using the Cochrane Collaboration bias risk tool. If half or more of the seven items in Randomized controlled trials (RCTs) were low-risk, then the RCT was considered low-risk research; otherwise, it was high-risk. Statistical analyses were performed using RevMan version 5.3 and STATA version 12.0. Results: We performed a meta-analysis of 11 randomized clinical studies including 771 subjects. Eight studies (73%) were of high quality. Compared with the control group, the exercise group showed a significant improvement in anxiety [standard mean difference (SMD) = -0.61; 95% confidence interval (CI): -0.86, -0.35]. The depression level in the exercise group was also significantly reduced (SMD = -0.48; 95% CI: -0.92, -0.04). Aerobic fitness and athletic endurance also improved [mean difference (MD) = 0.77; 95% CI: 0.58, 0.95; and MD = 20.69; 95% CI: 6.91, 34.46; respectively]. Conclusions: This meta-analysis suggests that exercise therapy may be effective in alleviating anxiety and depression symptoms in patients with coronary heart disease. Due to methodological weaknesses, rigorous research needs to be designed to further confirm the effectiveness of exercise therapy in improving the mental health of patients with coronary heart disease. Systematic Review Registration: https://inplasy.com/projects/, identifier: INPLASY202160017.

18.
Int J Gen Med ; 14: 5615-5620, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34548813

RESUMO

OBJECTIVE: To evaluate the distribution of high frequency mutant genes and the expression of PDL1 in different types of lung cancer. METHODS: This retrospective analysis was conducted on 330 patients who were diagnosed with primary lung cancer and treated in our hospital from October 2018 to October 2020. The patients were listed into non-small cell carcinoma group (101 cases), squamous carcinoma group (28 cases) and adenocarcinoma group (201 cases) according to their pathological results. The gene mutations were detected using EGFR, KRAS, and BRAF gene mutation detection kits, and the expression of PDL1 was detected by immunostaining. The mutation of EGFR, KRAS and BRAF genes and PDL1 expression in patients with different types of lung cancer were compared. RESULTS: The patients in the adenocarcinoma group had the highest incidence of EGFR gene mutation, the mutation rate of the gene whose mutation location was exon 18 was significantly higher, and the difference between each group was statistically significant (P < 0.05). The patients in the adenocarcinoma group had the highest incidence of KRAS gene mutation, the mutation rate of the gene whose mutation location was exon 2 was obviously the highest, exon 15 was the lowest, and the difference between each group was statistically significant (P < 0.05). There was no significant difference in the distribution of BRAF gene mutations among groups, and all mutations occurred on exon 15, with no statistically significant difference between each group (P > 0.05). PD-L1 expression in NSCLC patients was significantly higher than that in other lung cancer patients (P < 0.05). CONCLUSION: EGFR and KRAS genes showed obvious specific expressions in patients with different types of lung cancer and they were more common in patients with lung adenocarcinoma. Gene mutation and PDL1 expression are high in patients with lung adenocarcinoma.

19.
Front Aging Neurosci ; 13: 676827, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276340

RESUMO

Objective: This systematic review and meta-analysis aimed to assess the effects of the combination of acupuncture-related therapies with conventional medication compared with conventional medication in patients with Parkinson's disease (PD). Methods: A literature search within eight databases [including Medline, Embase, the Cochrane Library, PubMed, China National Knowledge Infrastructure (CNKI), China Biology Medicine (CBM), VIP, and Wanfang Database] was performed covering a time frame from their inception to August 2020. Randomized controlled trials (RCTs) comparing acupuncture-related therapies combined with conventional medication vs. conventional medication in patients with PD were eligible. Two authors independently assessed the risk of bias. Assessments were performed with the total and subscales scores of the Unified Parkinson's Disease Rating Scale (UPDRS), 39-item Parkinson's Disease Questionnaire (PDQ-39), the dosage of Madopar, Mini-Mental State Examination (MMSE), and 17-item Hamilton Depression Scale (HAMD). Data were analyzed by adopting the Cochrane Collaboration's RevMan 5.4 (Review Man, Copenhagen, Denmark); and mean effect sizes and 95% confidence intervals were estimated. Tests for heterogeneity were used to assess differences in treatment effects across different types of acupuncture used. Results: Sixty-six trials met the inclusion criteria, of which 61 trials provided data for the meta-analysis. We defined high-quality articles as those with a low risk of bias in four or more domains; and only 10 (15.15%) articles were of high quality. Compared with the controls, acupuncture-related therapies with conventional medication achieved a benefit in the primary outcomes of UPDRS (motor subscore: -3.90, -4.33 to -3.49, P < 0.01; total score: -7.37 points, -8.91 to -5.82, P < 0.001; activities of daily living subscore: -3.96, -4.96 to -2.95, P < 0.01). For the subgroup difference test among the effects of different acupuncture methods, significant differences existed in outcomes with the UPDRS-III, UPDRS-I, UPDRS-IV, and PDQ-39 scores and Madopar dosage, while non-significant differences existed with the UPDRS-total, UPDRS-II, HAMD, and MMSE scores. Conclusions: Acupuncture-related therapies combined with conventional medication may benefit individuals with PD. Our review findings should be considered with caution because of the methodological weaknesses in the included trials. Future, large randomized trials of acupuncture-related therapies for PD with high methodological quality are warranted. Systematic Review Registration: Identifier CRD42021228110.

20.
Micromachines (Basel) ; 12(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066183

RESUMO

Microfluidic microphysiological systems (MPSs) or "organs-on-a-chip" are a promising alternative to animal models for drug screening and toxicology tests. However, most microfluidic devices employ polydimethylsiloxane (PDMS) as the structural material; and this has several drawbacks. Cyclo-olefin polymers (COPs) are more advantageous than PDMS and other thermoplastic materials because of their low drug absorption and autofluorescence. However, most COP-based microfluidic devices are fabricated by solvent bonding of the constituent parts. Notably, the remnant solvent can affect the cultured cells. This study employed a photobonding process with vacuum ultraviolet (VUV) light to fabricate microfluidic devices without using any solvent and compared their performance with that of solvent-bonded systems (using cyclohexane, dichloromethane, or toluene as the solvent) to investigate the effects of residual solvent on cell cultures. Quantitative immunofluorescence assays indicated that the coating efficiencies of extracellular matrix proteins (e.g., Matrigel and collagen I) were lower in solvent-bonded COP devices than those in VUV-bonded devices. Furthermore, the cytotoxicity of the systems was evaluated using SH-SY5Y neuroblastoma cells, and increased apoptosis was observed in the solvent-processed devices. These results provide insights into the effects of solvents used during the fabrication of microfluidic devices and can help prevent undesirable reactions and establish good manufacturing practices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...