Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(10): 17365-17375, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36201312

RESUMO

Plasmonic antenna-reactor photocatalysts have been shown to convert light efficiently to chemical energy. Virtually all chemical reactions mediated by such complexes to date, however, have involved relatively simple reactions that require only a single type of reaction site. Here, we investigate a planar Al nanodisk antenna with two chemically distinct and spatially separated active sites in the form of Pd and Fe nanodisks, fabricated in 90° and 180° trimer configurations. The photocatalytic reactions H2 + D2 → 2HD and NH3 + D2 → NH2D + HD were both investigated on these nanostructured complexes. While the H2-D2 exchange reaction showed an additive behavior for the linear (180°) nanodisk complex, the NH3 + D2 reaction shows a clear synergistic effect of the position of the reactor nanodisks relative to the central Al nanodisk antenna. This study shows that light-driven chemical reactions can be performed with both chemical and spatial control of the specific reaction steps, demonstrating precisely designed antennas with multiple reactors for tailored control of chemical reactions of increasing complexity.

2.
J Chem Phys ; 156(5): 054112, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35135248

RESUMO

We demonstrate the accuracy and efficiency of the restricted open-shell and unrestricted formulation of the absolutely localized Huzinaga projection operator embedding method. Restricted open-shell and unrestricted Huzinaga projection embedding in the full system basis is formally exact to restricted open-shell and unrestricted Kohn-Sham density functional theory, respectively. By utilizing the absolutely localized basis, we significantly improve the efficiency of the method while maintaining high accuracy. Furthermore, the absolutely localized basis allows for high accuracy open-shell wave function methods to be embedded into a closed-shell density functional theory environment. The open-shell embedding method is shown to calculate electronic energies of a variety of systems to within 1 kcal/mol accuracy of the full system wave function result. For certain highly localized reactions, such as spin transition energies on transition metals, we find that very few atoms are necessary to include in the wave function region in order to achieve the desired accuracy. This extension further broadens the applicability of our absolutely localized Huzinaga level-shift projection operator method to include open-shell species. Here, we apply our method to several representative examples, such as spin splitting energies, catalysis on transition metals, and radical reactions.

3.
J Am Chem Soc ; 142(17): 8006-8018, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32240590

RESUMO

Although there are myriad binding modes of heterocumulenes to metal centers, the monometallic κ2-ECE (E = O, S, NR) coordination mode has not been reported. Herein, the synthesis, isolation, and physical characterization of Cp2Ti(κ2-tBuNCNtBu) (3) (Cp = cyclopentadienyl, tBu = tert-butyl), a strained 4-membered metallacycle bearing a free carbene, is described. Computational (DFT, CASSCF, QT-AIM, ELF) and solid-state CP-MAS 13C NMR spectroscopic analysis indicate that 3 is best described as a free carbene with partial Ti-Cß bonding that results from Ti-N π-bonding mixing with N-C-N σ-bonding of the bent N-C-N framework. Reactivity studies of 3 corroborate its carbene-like nature: protonation with [LutH]I results in the formation of a Ti-formamidinate (4), while oxidation with S8 yields a Ti-thioureate (5). Additionally, a related bridged dititanamidocarbene, (Cp2Ti)2(µ-η1,η1-CyNCNCy) (10) (Cy = cyclohexyl) is reported. Taken together, this work suggests that the 2-electron reduction of heterocumulene moieties can allow access to unusual free carbene coordination geometries given the proper stabilizing coordination environment from the reducing transition metal fragment.


Assuntos
Metano/análogos & derivados , Compostos Organometálicos/química , Titânio/química , Humanos , Metano/química , Estrutura Molecular
4.
J Chem Theory Comput ; 16(4): 2284-2295, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32105469

RESUMO

Using wave function (WF) in density functional theory (DFT) embedding methods provides a framework for performing localized, high-accuracy WF calculations on a system, while not incurring the full computational cost of the WF calculation on the full system. To effectively partition a system into localized WF and DFT subsystems, we utilize the Huzinaga level-shift projection operator within an absolutely localized basis. In this work, we study the ability of the absolutely localized Huzinaga level-shift projection operator method to study complex WF and DFT partitions, including partitions between multiple covalent bonds, a double bond, and transition-metal-ligand bonds. We find that our methodology can accurately describe all of these complex partitions. Additionally, we study the robustness of this method with respect to the WF method, specifically where the embedded systems were described using a multiconfigurational WF method. We found that the method is systematically improvable with respect to both the number of atoms in the WF region and the size of the basis set used, with energy errors less than 1 kcal/mol. Additionally, we calculated the adsorption energy of H2 to a model of an iron metal-organic framework (Fe-MOF-74) to within 1 kcal/mol compared to CASPT2 calculations performed on the full model while incurring only a small fraction of the full computational cost. This work demonstrates that the absolutely localized Huzinaga level-shift projection operator method is applicable to very complex systems with difficult electronic structures.

5.
ACS Chem Biol ; 15(5): 1252-1260, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32043868

RESUMO

Phosphorylation is an essential protein modification and is most commonly associated with hydroxyl-containing amino acids via an adenosine triphosphate (ATP) substrate. The last decades have brought greater appreciation to the roles that phosphorylation of myriad amino acids plays in biological signaling, metabolism, and gene transcription. Histidine phosphorylation occurs in both eukaryotes and prokaryotes but has been shown to dominate signaling networks in the latter due to its role in microbial two-component systems. Methods to investigate histidine phosphorylation have lagged behind those to study serine, threonine, and tyrosine modifications due to its inherent instability and the historical view that this protein modification was rare. An important strategy to overcome the reactivity of phosphohistidine is the development of substrate-based probes with altered chemical properties that improve modification longevity but that do not suffer from poor recognition or transfer by the protein. Here, we present combined experimental and computational studies to better understand the molecular requirements for efficient histidine phosphorylation by comparison of the native kinase substrate, ATP, and alkylated ATP derivatives. While recognition of the substrates by the histidine kinases is an important parameter for the formation of phosphohistidine derivatives, reaction sterics also affect the outcome. In addition, we found that stability of the resulting phosphohistidine moieties correlates with the stability of their hydrolysis products, specifically with their free energy in solution. Interestingly, alkylation dramatically affects the stability of the phosphohistidine derivatives at very acidic pH values. These results provide critical mechanistic insights into histidine phosphorylation and will facilitate the design of future probes to study enzymatic histidine phosphorylation.


Assuntos
Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Aminoácidos/química , Histidina Quinase/metabolismo , Alquilação , Sequência de Aminoácidos , Escherichia coli/metabolismo , Histidina/análogos & derivados , Histidina/química , Concentração de Íons de Hidrogênio , Hidrólise , Fosforilação , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Termodinâmica
6.
Chem Sci ; 11(27): 7204-7209, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34123005

RESUMO

The ring-opening oxidative amination of methylenecyclopropanes (MCPs) with diazenes catalyzed by py3TiCl2(NR) complexes is reported. This reaction selectively generates branched α-methylene imines as opposed to linear α,ß-unsaturated imines, which are difficult to access via other methods. Products can be isolated as the imine or hydrolyzed to the corresponding ketone in good yields. Mechanistic investigation via density functional theory suggests that the regioselectivity of these products results from a Curtin-Hammett kinetic scenario, where reversible ß-carbon elimination of a spirocyclic [2 + 2] azatitanacyclobutene intermediate is followed by selectivity-determining ß-hydrogen elimination of the resulting metallacycle. Further functionalizations of these branched α-methylene imine products are explored, demonstrating their utility as building blocks.

7.
ACS Catal ; 10(22): 13504-13517, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34327040

RESUMO

The rational design of catalysts remains a challenging endeavor within the broader chemical community owing to the myriad variables that can affect key bond-forming events. Designing selective catalysts for any reaction requires an efficient strategy for discovering predictive structure-activity relationships. Herein, we describe the use of iterative supervised principal component analysis (ISPCA) in de novo catalyst design. The regioselective synthesis of 2,5-dimethyl-1,3,4-triphenyl-1H-pyrrole (C) via a Ti-catalyzed formal [2 + 2 +1] cycloaddition of phenylpropyne and azobenzene was targeted as a proof of principle. The initial reaction conditions led to an unselective mixture of all possible pyrrole regioisomers. ISPCA was conducted on a training set of catalysts, and their performance was regressed against the scores from the top three principal components. Component loadings from this PCA space and k-means clustering were used to inform the design of new test catalysts. The selectivity of a prospective test set was predicted in silico using the ISPCA model, and optimal candidates were synthesized and tested experimentally. This data-driven predictive-modeling workflow was iterated, and after only three generations the catalytic selectivity was improved from 0.5 (statistical mixture of products) to over 11 (>90% C) by incorporating 2,6-dimethyl-4-(pyrrolidin-1-yl)pyridine as a ligand. The origin of catalyst selectivity was probed by examining ISPCA variable loadings in combination with DFT modeling, revealing that ligand lability plays an important role in selectivity. A parallel catalyst search using multivariate linear regression (MLR), a popular approach in catalysis informatics, was also conducted in order to compare these strategies in a hypothetical catalyst scouting campaign. ISPCA appears to be more robust and predictive than MLR when sparse training sets are used that are representative of the data available during the early search for an optimal catalyst. The successful development of a highly selective catalyst without resorting to long, stochastic screening processes demonstrates the inherent power of ISPCA in de novo catalyst design and should motivate the general use of ISPCA in reaction development.

8.
J Chem Theory Comput ; 16(1): 385-398, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31769981

RESUMO

We present a quantum embedding method that allows for calculation of local excited states embedded in a Kohn-Sham density functional theory (DFT) environment. Projection-based quantum embedding methodologies provide a rigorous framework for performing DFT-in-DFT and wave function in DFT (WF-in-DFT) calculations. The use of absolute localization, where the density of each subsystem is expanded in only the basis functions associated with the atoms of that subsystem, provide improved computationally efficiency for WF-in-DFT calculations by reducing the number of orbitals in the WF calculation. In this work, we extend absolutely localized projection-based quantum embedding to study localized excited states using EOM-CCSD-in-DFT and TDDFT-in-DFT. The embedding results are highly accurate compared to the corresponding canonical EOM-CCSD and TDDFT results on the full system, with TDDFT-in-DFT frequently more accurate than canonical TDDFT. The absolute localization method is shown to eliminate the spurious low-lying excitation energies for charge-transfer states and prevent overdelocalization of excited states. Additionally, we attempt to recover the environment response caused by the electronic excitations in the high-level subsystem using different schemes and compare their accuracy. Finally, we apply this method to the calculation of the excited-state energy of green fluorescent protein and show that we systematically converge to the full system results. Here we demonstrate how this method can be useful in understanding excited states, specifically which chemical moieties polarize to the excitation. This work shows absolutely localized projection-based quantum embedding can treat local electronic excitations accurately and make computationally expensive WF methods applicable to systems beyond current computational limits.

9.
J Am Chem Soc ; 140(23): 7267-7281, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29763560

RESUMO

A combined computational and experimental study on the mechanism of Ti-catalyzed formal [2 + 2 + 1] pyrrole synthesis from alkynes and aryl diazenes is reported. This reaction proceeds through a formally TiII/TiIV redox catalytic cycle as determined by natural bond orbital (NBO) and intrinsic bond orbital (IBO) analysis. Kinetic analysis of the reaction of internal alkynes with azobenzene reveals a complex equilibrium involving Ti═NPh monomer/dimer equilibrium and Ti═NPh + alkyne [2 + 2] cycloaddition equilibrium along with azobenzene and pyridine inhibition equilibria prior to rate-determining second alkyne insertion. Computations support this kinetic analysis, provide insights into the structure of the active species in catalysis and the roles of solvent, and provide a new mechanism for regeneration of the Ti imido catalyst via disproportionation. Reductive elimination from a 6-membered azatitanacyclohexadiene species to generate pyrrole-bound TiII is surprisingly facile and occurs through a unique electrocyclic reductive elimination pathway similar to a Nazarov cyclization. The resulting TiII species are stabilized through backbonding into the π* of the pyrrole framework, although solvent effects also significantly stabilize free TiII species that are required for pyrrole loss and catalytic turnover. Further computational and kinetic analysis reveals that in complex reactions with unysmmetric alkynes the resulting pyrrole regioselectivity is driven primarily by steric effects for terminal alkynes and inductive effects for internal alkynes.


Assuntos
Alcinos/química , Compostos Azo/química , Iminas/química , Pirróis/síntese química , Titânio/química , Catálise , Ciclização , Isomerismo , Cinética , Modelos Químicos , Estrutura Molecular , Oxirredução , Teoria Quântica , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...