Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202403521, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654696

RESUMO

Lithium-oxygen batteries possess an extremely high theoretical energy density, rendering them a prime candidate for next-generation secondary batteries. However, they still face multiple problems such as huge charge polarization and poor cycle life, which lay a significant gap between laboratory research and commercial applications. In this work, we adapt 15-crown-5 ether (C15) as solvent to regulate the generation of discharge products in lithium-oxygen batteries. The coronal structure endows C15 with strong affinity to Li+, firmly stabilizes the intermediate LiO2 and discharge product Li2O2. Thus, the crystalline Li2O2 is amorphized into easily decomposable amorphous products. The lithium-oxygen batteries assembled with 0.5 M C15 electrolyte show an increased discharge capacity from 4.0 mAh cm-2 to 5.7 mAh cm-2 and a low charge overpotential of 0.88 V during the whole lifespan at 0.05 mA cm-2. The batteries with 1 M C15 electrolyte can cycle stably for 140 cycles. Furthermore, the amorphous characteristic of Li2O2 product is preserved when matched with redox mediators such as LiI, with the charge polarization further decreasing to 0.74 V over a cycle life of 190 cycles. This provides new possibilities for electrolyte design to promote Li2O2 amorphization and reduce charge overpotential in lithium-oxygen batteries.

2.
Membranes (Basel) ; 14(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38535280

RESUMO

Proton ceramic fuel cells offer numerous advantages compared with conventional fuel cells. However, the practical implementation of these cells is hindered by the poor sintering activity of the electrolyte. Despite extensive research efforts to improve the sintering activity of BCZY, the systematic exploration of the utilization of NiO as a sintering additive remains insufficient. In this study, we developed a novel BaCe0.55Zr0.35Y0.1O3-δ (BCZY) electrolyte and systematically investigated the impact of adding different amounts of NiO on the sintering activity and electrochemical performance of BCZY. XRD results demonstrate that pure-phase BCZY can be obtained by sintering the material synthesized via solid-state reaction at 1400 °C for 10 h. SEM analysis revealed that the addition of NiO has positive effects on the densification and grain growth of BCZY, while significantly reducing the sintering temperature required for densification. Nearly fully densified BCZY ceramics can be obtained by adding 0.5 wt.% NiO and annealing at 1350 °C for 5 h. The addition of NiO exhibits positive effects on the densification and grain growth of BCZY, significantly reducing the sintering temperature required for densification. An anode-supported full cell using BCZY with 0.5 wt.% NiO as the electrolyte reveals a maximum power density of 690 mW cm-2 and an ohmic resistance of 0.189 Ω cm2 at 650 °C. Within 100 h of long-term testing, the recorded current density remained relatively stable, demonstrating excellent electrochemical performance.

3.
Nano Lett ; 24(9): 2782-2788, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38411082

RESUMO

Two-dimensional (2D) membranes have shown promising potential for ion-selective separation but often suffer from the trade-off between permeability and selectivity. Herein, we report an ultrathin 2D sulfonate-functionalized metal-organic framework (MOF) membrane for efficient lithium-ion sieving. The narrow pores with angstrom precision in the MOF assist hydrated ions to partially remove the hydration shell, according to different hydration energies. The abundant sulfonate groups in the MOF channels serve as hopping sites for fast lithium-ion transport, contributing to a high Li-ion permeability. Then, the difference in affinity of the Li+, Na+, K+, and Mg2+ ions to the terminal sulfonate groups further enhances the Li-ion selectivity. The reported ultrathin MOF membrane overcomes the trade-off between permeability and selectivity and opens up a new avenue for highly permselective membranes.

4.
Small Methods ; : e2301201, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169106

RESUMO

NASICON-type Na+ conductors show a great potential to realize high performance and safety for solid-state sodium metal batteries (SSSMBs) owing to their superior ionic conductivity, high chemical stability, and low cost. However, the interfacial incompatibility and sodium dendrite hazards still hinder its applications. Herein, a conversion-alloy reaction-induced interface ionic/electronic redistribution strategy, constructing a gradient sodiophilic and electron-blocking interphase consisting of sodium-tin (Na-Sn) alloy and sodium fluoride (NaF) between NASICON ceramic electrolyte and Na anode is proposed. The Nax Sny alloy-rich layer near the side of the sodium electrode acts as a superior conductor to enhance the anodic sodium-ion transport dynamics while the NaF-rich layer near the side of the ceramic electrolyte serves as an electron insulator to confine the interfacial electron turning ability, achieving uniform and dendrite-free Na deposition during the cycling. Profiting from the synergistic effect of the gradient interphase, the critical current density (CCD) of the assembled Na symmetric cell is significantly increased to 1.7 mA cm-2 and the cycling stability of that is as high as 1200 h at 0.5 mA cm-2 . Moreover, quasi-solid-state sodium batteries with both Na3 V2 (PO4 )3 and NaNi1/3 Fe1/3 Mn1/3 O2 cathode display outstanding electrochemical performance.

5.
Adv Mater ; 36(13): e2308484, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38111372

RESUMO

With increasing energy storage demands across various applications, reliable batteries capable of performing in harsh environments, such as extreme temperatures, are crucial. However, current lithium-ion batteries (LIBs) exhibit limitations in both low and high-temperature performance, restricting their use in critical fields like defense, military, and aerospace. These challenges stem from the narrow operational temperature range and safety concerns of existing electrolyte systems. To enable LIBs to function effectively under extreme temperatures, the optimization and design of novel electrolytes are essential. Given the urgency for LIBs operating in extreme temperatures and the notable progress in this research field, a comprehensive and timely review is imperative. This article presents an overview of challenges associated with extreme temperature applications and strategies used to design electrolytes with enhanced performance. Additionally, the significance of understanding underlying electrolyte behavior mechanisms and the role of different electrolyte components in determining battery performance are emphasized. Last, future research directions and perspectives on electrolyte design for LIBs under extreme temperatures are discussed. Overall, this article offers valuable insights into the development of electrolytes for LIBs capable of reliable operation in extreme conditions.

6.
ACS Appl Mater Interfaces ; 15(38): 45035-45044, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37704019

RESUMO

The steam content in the air electrode is one of the major factors determining the efficiency and stability of protonic ceramic electrolysis cells (PCECs). In this work, the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) current collection layer (CCL) film with unique finger-like pores was successfully prepared by the phase-inversion tape-casting technique (PT), which promoted the gas diffusion inside the electrode and effectively improved the stability of the single cell in high-humidity air. A screen-printed LSCF-BaCe0.7Zr0.1Y0.1Yb0.1O3 catalytic active layer (CAL) was also applied to match the thermal expansion coefficient (TEC) values and improve the interface combination. The electrochemical impedance spectroscopy (EIS) and distribution of relaxation time (DRT) studies of the symmetric cells showed that when the film was used to match different CALs as an air electrode, the gas diffusion inside the electrode was no longer restricted by the increasing steam content in air. The single cell exhibited a high electrolysis current density of 1 A cm-2 (1.25 V) at 650 °C; furthermore, no performance degradation was observed in this high current density when electrolyzed in air with 40 and 60% humidity for more than 250 h. These results present a simplified and economical scheme to develop air electrodes with high stability in wet air with a high steam content.

7.
ACS Appl Mater Interfaces ; 15(8): 10585-10592, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36802494

RESUMO

Lithium metal batteries based on metallic Li anodes have been recognized as competitive substitutes for current energy storage technologies due to their exceptional advantage in energy density. Nevertheless, their practical applications are greatly hindered by the safety concerns caused by lithium dendrites. Herein, we fabricate an artificial solid electrolyte interface (SEI) via a simple replacement reaction for the lithium anode (designated as LNA-Li) and demonstrate its effectiveness in suppressing the formation of lithium dendrites. The SEI is composed of LiF and nano-Ag. The former can facilitate the horizontal deposition of Li, while the latter can guide the uniform and dense lithium deposition. Benefiting from the synergetic effect of LiF and Ag, the LNA-Li anode exhibits excellent stability during long-term cycling. For example, the LNA-Li//LNA-Li symmetric cell can cycle stably for 1300 and 600 h at the current densities of 1 and 10 mA cm-2, respectively. Impressively, when matching with LiFePO4, the full cells can steadily cycle for 1000 times without obvious capacity attenuation. In addition, the modified LNA-Li anode coupled with the NCM cathode also exhibits good cycling performance.

8.
Nanoscale ; 14(42): 15640-15650, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36263768

RESUMO

Among various cathode materials for sodium-ion batteries, Na3V2(PO4)3 has attracted much attention due to its outstanding electrochemical performance. However, the toxicity and expensive price of vanadium limit its practical application. Therefore, the substitution of vanadium with nontoxic and inexpensive transition metal elements is significant. We select the earth-abundant iron element to partially replace the vanadium element, and successfully synthesize Na3.36FeV(PO4)3 with a Na superionic conductor structure. Furthermore, a Na3.36FeV(PO4)3 cathode with an optimal carbon content can deliver an initial capacity of 97.6 mA h g-1 at 0.5C with a high capacity retention of 96.4% after 200 cycles. In addition, it also delivers an initial capacity of 90.4 mA h g-1 at 10C, and a capacity retention of 80% can be obtained after 5000 cycles. We also found that the lack of sodium in the material can be compensated by an electrochemical reaction. Furthermore, the in situ X-ray diffraction analysis reveals that the sodium storage process follows a pseudo-solid-solution reaction mechanism and the volume change ratio is less than 3% during charging/discharging. In order to study the practical application capability of Na3.36FeV(PO4)3, we assemble the pre-activated cathode and a hard carbon anode into a full cell, which exhibits high initial discharge capacities of 103 and 91.3 mA h g-1 at 0.5C and 10C, respectively. This work will provide new insights into the structural engineering of low-toxicity and ultralong-life NASICON-type cathode materials for SIBs.

9.
Small Methods ; 6(9): e2200667, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35853248

RESUMO

Solid-state lithium metal batteries (SSLMBs) are attracting increasing attentions as one of the promising next-generation technologies due to their high-safety and high-energy density. Their practical application, however, is hindered by lithium dendrite growth and propagation in solid-state electrolytes (SSEs). Herein, an in situ grain boundary modification strategy relying on the reaction between Li2 TiO3 (LTO) and Ta-substituted garnet-type electrolyte (LLZT) is developed, which forms LaTiO3 along with lesser amounts of LTO/Li2 ZrO3 at the grain boundaries (GBs). The second phases of LTO/Li2 ZrO3 inhibit abnormal grain growth. The presence of LaTiO3 at the GBs reduces electronic conductivity and improves mechanical strength, which can hinder dendrite formation and block lithium dendrite penetration through the LLZT. Moreover, the adjacent grains by LaTiO3 build a continuous Li+ transport path, providing a homogeneous Li+ flux throughout the whole LLZT-4LTO. As a result, symmetric cells of Li | LLZT-4LTO | Li shows a high critical current density of 1.8 mA cm-2 and a long cycling stability up to 2000 h at 0.3 mA cm-2 . Moreover, the high-voltage full cells demonstrate remarkable cycling stability and rate performance. It is believed that this novel grain boundary modification strategy can shed light on the constructing of high-performance SSEs for practical SSLMBs.

10.
Chem Commun (Camb) ; 58(54): 7570-7573, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35708904

RESUMO

We design a vanadium nitride (VN) modified porous carbon nanofiber film as the host to load SeS2 as the cathode (SeS2@VN/CNFs) for improving Li storage capacity. The conductive porous carbon nanofibers can accommodate active SeS2 and release the volume change. The introduced VN nanoparticles can chemically anchor the intermediate species and improve the utilization of SeS2. As a result, the SeS2@VN/CNFs cathode displays a superior electrochemical performance including a high reversible capacity of 806 mAh g-1 at 0.2 C and good long-term cycling stability in Li-SeS2 batteries.

11.
ACS Appl Mater Interfaces ; 14(9): 11950-11961, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35193356

RESUMO

Sulfide-type solid electrolytes (SSEs) are supposed to be preferential candidates for all-solid-state Li metal batteries (ASSLMBs) due to their satisfactory Li+ conductivity and preferable mechanical stiffness. Nonetheless, the poor stability between the Li anode and SSEs and uncontrolled Li dendrite growth severely restrict their commercial application. Herein, an amphiphilic LixSiOy-enriched solid electrolyte interphase (SEI) as a "Janus" layer was first introduced at the Li/SSEs interface, and it exhibited bond coupling reactivity with both the Li anode and SSEs by forming Li-S, Li-O-Si, and Si-S covalent bonds, which is called the pincer effect. In addition to the physical isolation of Li and SSEs to prevent side reactions between them, LixSiOy with high ionic conductivity offers abundant and evenly distributed transport channels for fast Li+ migration. As evidenced by in situ microscopy, the high-strength anodic interface constructed by the pincer effect and in situ decomposition mentioned above is free from mechanical damage during the Li plating/stripping. As a result, the symmetric cells exert an outstanding cycling performance for over 2000 h at 0.2 mA cm-2 and even 500 h at 0.5 mA cm-2 without evident resistance growth. The artificial SEI layer with the pincer effect and its effective application in interfacial stabilization put forward a new perspective for the commercialization of ASSLMBs.

12.
ACS Appl Mater Interfaces ; 14(9): 11255-11263, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35195003

RESUMO

Iron-based mixed-polyanionic cathode Na4Fe3(PO4)2(P2O7) (NFPP) has advantages of environmental benignity, easy synthesis, high theoretical capacity, and remarkable stability. From NFPP, a novel Li-replaced material NaLi3Fe3(PO4)2(P2O7) (NLFPP) is synthesized through active Na-site structural engineering by an electrochemical ion exchange approach. The NLFPP cathode can show high reversible capacities of 103.2 and 90.3 mA h g-1 at 0.5 and 5C, respectively. It also displays an impressive discharge capacity of 81.5 mA h g-1 at an ultrahigh rate of 30C. Density functional theory (DFT) calculation demonstrates that the formation energy of NLFPP is the lowest among NLFPP, NFPP, and NaFe3(PO4)2(P2O7), indicating that NLFPP is the easiest to form and the conversion from NFPP to NLFPP is thermodynamically favorable. The Li substitution for Na in the NFPP lattice causes an increase in the unit cell parameter c and decreases in a, b, and V, which are revealed by both DFT calculations and in situ X-ray powder diffraction (XRD) analysis. With hard carbon (HC) as the anode, the NLFPP//HC full cell shows a high reversible capacity of 91.1 mA h g-1 at 2C and retains 82.4% after 200 cycles. The proposed active-site-specific structural tailoring via electrochemical ion exchange will give new insights into the design of high-performance cathodes for lithium-ion batteries.

13.
Chem Commun (Camb) ; 57(64): 7934-7937, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34286740

RESUMO

We report a rare-earth triflate catalyst Sc(OTf)3 for the ring-opening polymerization of 1,3-dioxolane and the in situ production of a quasi-solid-state poly(1,3-dioxolane) electrolyte, which not only demonstrates a superior ionic conductivity of 1.07 mS cm-1 at room temperature, but achieves dendrite-free lithium deposition and a high Coulombic efficiency of 92.3% over 200 Li plating/striping cycles.

14.
ACS Appl Mater Interfaces ; 13(26): 30766-30775, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34162203

RESUMO

Redox mediators (RMs) have been developed as efficient approaches to lower the charge polarization of Li-O2 batteries. However, the shuttle effect resulting from their soluble nature severely damages the battery performance, causing failure of the RM and anode corrosion. In this work, a chemical binding strategy based on a MXene-modified separator with a 3D porous hierarchical structure design was developed to suppress the I3- shutting in LiI-involved Li-O2 battery. As corroborated by experimental characterizations and theoretical calculations, the abundant -OH terminal groups on the MXene surface functioned as effective binding sites for suppressing the migration of I3-, while the 3D porous structure ensured the fast transfer of lithium ions. As a result, the Li-O2 battery with the MXene-modified separator showed no sign of redox shuttling compared with its counterparts in the full discharge/charge tests. In the meantime, the MXene-modified separator based-cell exhibited a stable cycle life up to 100 cycles, which is 3 times longer than the control samples. We believe that this work could provide insights into the development of separator modification for Li-O2 batteries with RMs.

15.
ACS Appl Mater Interfaces ; 13(22): 25972-25980, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34038077

RESUMO

The mixed polyanionic material Na4Fe3(PO4)2(P2O7) combines the advantages of NaFePO4 and Na2FeP2O7 in capacity, stability, and cost. Herein, we synthesized carbon-coated hollow-sphere-structured Na4Fe3(PO4)2(P2O7) powders by a scalable spray drying route. The optimal sample can deliver a high discharge capacity of 107.7 mA h g-1 at 0.2C. It also delivers a capacity of 88 mA h g-1 at 10C and a capacity of retention of 92% after 1500 cycles. Ex situ X-ray diffraction analysis indicates a slight volume change (less than 3%) in the Na4Fe3(PO4)2(P2O7) lattice cell. Therefore, such a spraying-derived carbon-coated Na4Fe3(PO4)2(P2O7) powder is a very attractive cathode electrode for sodium-ion batteries.

16.
Chem Commun (Camb) ; 57(33): 4023-4026, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33885656

RESUMO

We report dense Na3Zr2Si2PO12 with an average grain size of 546 ± 58 nm and prepared by a facile method. The nano-grained Na3Zr2Si2PO12 exhibits an extremely high conductivity of 1.02 × 10-3 S cm-1 and low interfacial resistance of 35 Ω cm2 at 25 °C. Such processing facilitates the exploration of nanocrystalline conductors.

17.
ACS Appl Mater Interfaces ; 12(44): 49626-49635, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33080137

RESUMO

Sulfur reactivity in lithium-sulfur batteries highly depends on its distribution and morphology during cycling, which is of great significance to suppress the shuttle effect and promote conversion reaction. Herein, cobalt phosphide nanoflakes are prepared and used as a sulfur host. An improved redox kinetics from sulfur to lithium sulfide and the corresponding fast lithium-ion diffusion are observed to greatly promote the electrochemical performance of lithium-sulfur batteries. Meanwhile, for the first time, we propose "effective triple phase contact" and "insulated dead sulfur" to account for cycling performance differences of CoP@S and rGO@S batteries. The flower-like sulfur induced by CoP nanoflakes during cycling provides extra lithium-ion diffusion and electron transfer ways compared with agglomerated sulfur in the rGO@S cathode. The CoP@S battery shows good rate performance and delivers 520 mA h g-1 after 1000 cycles with an excellent Coulombic efficiency of 99%. In contrast, no conversion reaction happens after 600 cycles in the rGO@S battery, implying no existence of reactive sulfur. This research reveals the effect of morphological evolution of sulfur on the cycling performance and affords an insight for developing high-performance lithium-sulfur batteries.

18.
Chem Commun (Camb) ; 56(67): 9719-9722, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32815959

RESUMO

Prussian white analogue nanoparticles were connected internally by a composite consisting of poly(butyl methacrylate) (PBMA) nano-gel and a conducting polymer layer via a one-step route. The powder falling problems have been mitigated by the intrinsic good binding strength of PBMA organogel; meanwhile, the conducting polymer provides extra transfer paths for electrons.

19.
Chem Commun (Camb) ; 56(60): 8392-8395, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32578606

RESUMO

A novel electrode material, TiO2-coated polyaniline intercalated layered titanate, is synthesized. Polyaniline is tri-functional: stabilizing the layered titanate structure, enlarging the interlayer spacing and enhancing the electronic conductivity. Such a composite can deliver high capacities of 258 and 219 mA h g-1 in sodium and potassium-ion batteries, respectively. Its high-rate capability and long cycle life are also impressive.

20.
ACS Appl Mater Interfaces ; 12(22): 24767-24776, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32406671

RESUMO

Improved power and cycle performances are eagerly required in intermediate-temperature sodium-metal halide (Na-MH) batteries. The existence of the low conductivity NiCl2 layer and the growth of the Ni and the NaCl particles limit the broader application of Na-NiCl2 battery. Herein, nickel-carbon composite nanofiber (NCCN) networks are synthesized by a multisolution electrospinning method to construct a novel three-dimensional cathode for Na-NiCl2 battery. The battery with the NCCN-based cathode shows significant improvement in rate and cycle performance at 190 °C. A capacity twice that of a conventional electrode after 100 cycles and 80% of the initial capacity after 400 cycles are observed at a current of 57 mA g-1. The NCCN-based cathode normally works more than 350 cycles without obvious degradation at a high current of 338 mA g-1, that is, a rate of 2C. Furthermore, in situ electrochemical impedance spectroscopy reveals faster electron and ion transport processes precisely on the charging and discharging processes of the NCCN-based cathode. It is found that the NCCNs can not only play the role of a continuous conductivity network but also limit the growth of grains. With the blocking effect of the carbon fibers, the volume expansions of Ni and NaCl grains are well restricted and their sizes were smaller than 500 nm and 7 µm after 50 cycles, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...