Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 780
Filtrar
1.
Environ Sci Technol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028927

RESUMO

The insect Tenebrio molitor possesses an exceptional capacity for ultrafast plastic biodegradation within 1 day of gut retention, but the kinetics remains unknown. Herein, we investigated the biofragmentation and degradation kinetics of different microplastics (MPs), i.e., polyethylene (PE), poly(vinyl chloride) (PVC), and poly(lactic acid) (PLA), in T. molitor larvae. The intestinal reactions contributing to the in vivo MPs biodegradation were concurrently examined by utilizing aggregated-induced emission (AIE) probes. Our findings revealed that the intestinal biofragmentation rates essentially followed the order of PLA > PE > PVC. Notably, all MPs displayed retention effects in the intestine, with PVC requiring the longest duration for complete removal/digestion. The dynamic rate constant of degradable MPs (0.2108 h-1 for PLA) was significantly higher than that of persistent MPs (0.0675 and 0.0501 h-1 for PE and PVC, respectively) during the digestive gut retention. Surprisingly,T. molitor larvae instinctively modulated their internal digestive environment in response to in vivo biodegradation of various MP polymers. Esterase activity and intestinal acidification both significantly increased following MPs ingestion. The highest esterase and acidification levels were observed in the PLA-fed and PVC-fed larvae, respectively. High digestive esterase activity and relatively low acidification levels inT. molitor larvae may, to some extent, contribute to more efficient MPs removal within the plastic-degrading insect. This work provided important understanding of MPs biofragmentation and intestinal responses to in vivo MPs biodegradation in plastic-degrading insects.

2.
Chemistry ; : e202402311, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016937

RESUMO

Azametallacyclopentadienes are an important class of metallacycles as the key intermediates in metal-promoted or catalyzed carbon-carbon coupling reaction of nitriles and alkynes. Rare-earth azametallacyclopentadienes have shown unique reactivity toward benzonitriles. The reaction chemistry of azalutetacyclopentadienes toward 2-methylbenzonitriles has been investigated in this work, showing different reactivity. Experimental and computational studies reveal that the reaction selectively initiates with the remote activation of the benzylic C-H bond by the Lu-N bond, followed by the intramolecular nucleophilic attack from the deprotonated benzylic carbon to form a C-C bond. Subsequently, the high ring strain promoted the generation of the uncoordinated carbanion dissociated from the lutetium center, which then undergoes intramolecular nucleophilic attack toward C≡N triple bond to give the final product containing fused 7-5-6-membered azalutetacycle. This work not only achieves highly selective three-step cascade transformation to form a unique class of rare-earth metallacycle, but also reveals a novel reaction pattern of unsaturated substrates with C-H bonds that can be activated.

3.
Environ Pollut ; 359: 124612, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39053800

RESUMO

Arsenobetaine (AsB), a non-toxic arsenic (As) compound found in marine fish, structurally resembles betaine (GB), a common methyl donor in organisms. This study investigates the potential role of GB in AsB synthesis in marine medaka (Oryzias melastigma) using metabolomic analysis. Dietary exposure to arsenate (As(V)) and varying GB concentrations (0.05% and 0.1% in diets) increased total As and AsB bioaccumulation, particularly in marine medaka muscle. Metabolomic analysis revealed that GB played a crucial role in promoting up-regulation in methylthioadenosine (MTA) by modulating the methionine cycle and down-regulation in glutathione (GSH) by modulating the glutathione cycle. Methionine metabolism and GSH, potentially binding again to exogenous GB, could synchronously produce more non-toxic AsB. Combining verification experiments of differential metabolites of Escherichia coli in vitro, GB, GSH, S-adenosylmethionine (SAM), and arsenocholine (AsC) entered methionine and glutathione metabolism pathways to generate more AsB. These findings underscore the GB's crucial regulatory role in modulating the synthesis of AsB. This study provides vital insights into the interplay between the structural analogs GB and AsB, offering specific strategies to enhance the detoxification mechanisms of marine fish in As-contaminated environments.

4.
Aquat Toxicol ; 273: 107033, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39084117

RESUMO

Cadmium (Cd) poses significant risks to aquatic organisms due to its toxicity and ability to disrupt the cellular processes. Given the similar atomic radius of Cd and calcium (Ca), Cd may potentially affect the Ca homeostasis, which can lead to impaired mineralization of skeletal structures and behavioral abnormalities. The formation of the spinal skeleton involves Ca transport and mineralization. In this study, we conducted an in-depth investigation on the effects of Cd at environmental concentrations on zebrafish (Danio rerio) skeletal development and the underlying molecular mechanisms. As the concentration of Cd increased, the accumulation of Cd in zebrafish larvae also rose, while the Ca content decreased significantly by 3.0 %-57.3 %, and vertebral deformities were observed. Transcriptomics analysis revealed that sixteen genes involved in metal absorption were affected. Exposure to 2 µg/L Cd significantly upregulated the expression of these genes, whereas exposure to 10 µg/L resulted in their downregulation. Consequently, exposure of zebrafish larvae to 10 µg/L of Cd inhibited the body segmentation growth and skeletal mineralization development by 29.1 %-56.7 %. This inhibition was evidenced by the downregulation of mineral absorption genes and decreased Ca accumulation. The findings of this study suggested that the inhibition of skeletal mineralization was likely attributed to the disruption of mineral absorption, thus providing novel insights into the mechanisms by which metal pollutants inhibit the skeletal development of fish.

5.
Natl Sci Rev ; 11(6): nwae162, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38855361

RESUMO

Direct synthesis of organophosphorus compounds from white phosphorus represents a significant but challenging subject, especially in the context of ongoing efforts to comprehensively improve the phosphorus-derived chemical industry driven by sustainability and safety concerns. China is the world's largest producer of white phosphorus, creating a significant demand for the green transformation of this crucial feedstock. This review provides an overview of advancements in white phosphorus activation by Chinese research teams, focusing on the direct construction of P‒C/N/O/S/M bonds from white phosphorus. Additionally, we offer some insights into prospective directions for the activation and transformation of white phosphorus in the future. This review paper aims to attract more researchers to engage in this area, stimulating follow-up exploration and fostering enduring advances.

6.
J Hazard Mater ; 474: 134791, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38833954

RESUMO

Despite the growing awareness of potential human and environmental risks associated with sunscreens, identifying the specific constituents responsible for their potential toxicity is challenging. In this study, we applied three different types of sunscreens with contrasting compositions and compared the effects of their particulate and soluble fractions based on 15 cellular biomarkers of HaCaT cells. Multilinear regression analysis revealed that the internalized soluble fractions played a primary role in the overall cytotoxicity of sunscreen mixtures, which was primarily attributed to their biotransformation, generating metabolites with higher toxicity. The presence of plastic microspheres in sunscreens either inhibited the internalization of soluble fractions or led to their redistribution toward lysosomes. Conversely, subcellular toxicity resulting from the sunscreen mixture was predominantly influenced by particulates. Bio-transformable particulates such as ZnO dissolved in the organelles and induced higher subcellular toxicity compared to bioinert particulates such as microplastics. Subcellular biomarkers including lysosomal count, lysosomal size, mitochondrial count and mitochondrial shape emerged as the potential predictors of sunscreen presence. Our study provides important understanding of sunscreen toxicity by elucidating the differential impacts of particulate and soluble fractions in mixture contaminants.


Assuntos
Lisossomos , Protetores Solares , Protetores Solares/toxicidade , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Células HaCaT , Biomarcadores/metabolismo , Solubilidade , Óxido de Zinco/toxicidade , Óxido de Zinco/química , Microplásticos/toxicidade , Material Particulado/toxicidade , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Microesferas
7.
J Hazard Mater ; 476: 135003, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38917627

RESUMO

Bivalve hemocytes are oyster immune cells composed of several cellular subtypes with different functions. Hemocytes accumulate high concentrations of copper (Cu) and exert critical roles in metal sequestration and detoxification in oysters, however the specific biochemical mechanisms that govern this have yet to be fully uncovered. Herein, we demonstrate that Cu(I) is predominately sequestered in lysosomes via the Cu transporter ATP7A in hemocytes to reduce the toxic effects of intracellular Cu(I). We also found that Cu(I) is translocated along tunneling nanotubes (TNTs) relocating from high Cu(I) cells to low Cu(I) cells, effectively reducing the burden caused by overloaded Cu(I), and that ATP7A facilitates the efflux of intracellular Cu(I) in both TNTs and hemocyte subtypes. We identify that elevated glutathione (GSH) contents and heat-shock protein (Hsp) levels, as well as the activation of the cell cycle were critical in maintaining the cellular homeostasis and function of hemocytes exposed to Cu. Cu exposure also increased the expression of membrane proteins (MYOF, RalA, RalBP1, and cadherins) and lipid transporter activity which can induce TNT formation, and activated the lysosomal signaling pathway, promoting intercellular lysosomal trafficking dependent on increased hydrolase activity and ATP-dependent activity. This study explores the intracellular and intercellular transport and detoxification of Cu in oyster hemocytes, which may help in understanding the potential toxicity and fate of metals in marine animals.

8.
Chem Soc Rev ; 53(13): 6735-6778, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38826108

RESUMO

Chiral 1,2-bis(2,5-diphenylphospholano)ethane (Ph-BPE) is a class of optimal organic bisphosphine ligands with C2-symmetry. Ph-BPE with its excellent catalytic performance in asymmetric synthesis has attracted much attention of chemists with increasing popularity and is growing into one of the most commonly used organophosphorus ligands, especially in asymmetric catalysis. Over two hundred examples have been reported since 2012. This review presents how Ph-BPE is utilized in asymmetric synthesis and how powerful it is as a chiral ligand or even a catalyst in a wide range of reactions including applications in the total synthesis of bioactive molecules.

9.
J Hazard Mater ; 476: 135039, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38941830

RESUMO

Copper (Cu) redox state has been an important issue in biology and toxicology research, but many research gaps remain to be explored due to the limitations in the detecting techniques. Herein, the regulation of Cu homeostasis, including absorption, translocation, utilization, storage, and elimination behavior is discussed. Cuproptosis, a newly identified type of cell death caused by excessive Cu accumulation, which results in the aggregation of DLAT protein or the loss of Fe-S cluster and finally proteotoxic stress, is reviewed. Several longstanding mysteries of diseases such as Wilson disease and toxic effects, may be attributed to cuproptosis. Furthermore, we review the advanced detection methods and application of Cu(I) and Cu(II), especially the in-situ imaging techniques such as XANES, and chemosensors. Most of the existing studies using these detection techniques focus on the bioaccumulation and toxicity of Cu(I) and Cu(II) in cells and aquatic organisms. Finally, it will be important to identify the roles of Cu(I) and Cu(II) in the growth, development, and diseases of organisms, as well as the relationship between bioaccumulation and toxicity of Cu(I) and Cu(II) in cellular and aquatic toxicology.

10.
J Proteomics ; 304: 105233, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38925350

RESUMO

Early diagnosis and intervention of esophageal squamous cell carcinoma (ESCC) can improve the prognosis. The purpose of this study was to identify biomarkers for ESCC and esophageal precancerous lesions (intraepithelial neoplasia, IEN). Based on the proteomic and genomic data of esophageal tissue including previously reported data, up-regulated proteins with copy number amplification in esophageal cancer were screened as candidate biomarkers. Five proteins, including KDM2A, RAD9A, ECT2, CYHR1 and TONSL, were confirmed by immunohistochemistry on ESCC and normal esophagus (NE). Then, we investigated the expression of 5 proteins in 236 participants (60 NEs, 93 IENs and 83 ESCCs) which were randomly divided into training set and test set. When distinguishing ESCC from NE, the area under curve (AUC) of the multiprotein model was 0.940 in the training set, while the lowest AUC of a protein was 0.735. In the test set, the results were similar. When distinguishing ESCC from IEN or distinguishing IEN from NE, the diagnostic efficiency of the multi-protein models were also improved compared with that of single protein. Our findings suggest that combined detection of KDM2A, RAD9A, ECT2, CYHR1 and TONSL can be used as potential biomarkers for the early diagnosis of ESCC and precancerous lesion development prediction. SIGNIFICANCE: Candidate biomarkers including KDM2A, RAD9A, ECT2, CYHR1 and TONSL screened by integrating genomic and proteomic data from the esophagus can be used as potential biomarkers for the early diagnosis of esophageal squamous cell carcinoma and precancerous lesion development prediction.


Assuntos
Biomarcadores Tumorais , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Carcinoma de Células Escamosas do Esôfago/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Carcinoma in Situ/diagnóstico , Carcinoma in Situ/metabolismo , Proteínas de Neoplasias/metabolismo , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/metabolismo , Proteômica/métodos , Idoso
11.
J Am Chem Soc ; 146(22): 15609-15618, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38776637

RESUMO

While the concept of metalla-aromaticity has well been extended to transition organometallic compounds in diverse geometries, aromatic rare-earth organometallic complexes are rare due to the special (n - 1)d0 configuration and high-lying (n - 1)d orbitals of rare-earth centers. In particular, nonplanar cases of rare-earth complexes have not been reported so far. Here, we disclose the nonplanar aromaticity of dinuclear scandium and samarium metallacycles characterized by various aromaticity indices (nucleus-independent chemical shift, isochemical shielding surface, anisotropy of induced current density, and isomerization stabilization energy). Bonding analyses (Kohn-Sham molecular orbital, adaptive natural density partitioning, multicenter bond indices, and principal interacting orbital) reveal that three delocalized π orbitals, predominantly contributed by the 2-butene tetraanion ligand, result in the formation of six-electron conjugated systems. Guided by these findings, we predicted that the lutetium and gadolinium analogues of dinuclear rare-earth metallacycles should be aromatic, which have been verified by the successful synthesis of real molecules. This work extends the concept of nonplanar aromaticity to the field of rare-earth metallacycles and illuminates the path for designing and synthesizing various rare-earth metalla-aromatics.

12.
ACS Nano ; 18(20): 13308-13321, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38716827

RESUMO

Understanding the degradation of nanoparticles (NPs) after crossing the cell plasma membrane is crucial in drug delivery designs and cytotoxicity assessment. However, the key factors controlling the degradable kinetics remain unclear due to the absence of a quantification model. In this study, subcellular imaging of silver nanoparticles (AgNPs) was used to determine the intracellular transfer of AgNPs, and single particle ICP-MS was utilized to track the degradation process. A cellular kinetic model was subsequently developed to describe the uptake, transfer, and degradation behaviors of AgNPs. Our model demonstrated that the intracellular degradation efficiency of AgNPs was much higher than that determined by mimicking testing, and the degradation of NPs was highly influenced by cellular factors. Specifically, deficiencies in Ca or Zn primarily decreased the kinetic dissolution of NPs, while a Ca deficiency also resulted in the retardation of NP transfer. The biological significance of these kinetic parameters was strongly revealed. Our model indicated that the majority of internalized AgNPs dissolved, with the resulting ions being rapidly depurated. The release of Ag ions was largely dependent on the microvesicle-mediated route. By changing the coating and size of AgNPs, the model results suggested that size influenced the transfer of NPs into the degradation process, whereas coating affected the degradation kinetics. Overall, our developed model provides a valuable tool for understanding and predicting the impacts of the physicochemical properties of NPs and the ambient environment on nanotoxicity and therapeutic efficacy.


Assuntos
Nanopartículas Metálicas , Prata , Prata/química , Nanopartículas Metálicas/química , Cinética , Humanos , Tamanho da Partícula , Modelos Biológicos
13.
Vet Res Commun ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38565798

RESUMO

Cryptosporidium spp., Enterocytozoon bieneusi, and Giardia duodenalis are common intestinal pathogens that infect humans and animals. To date, research regarding these three protozoa in the Ningxia Hui Autonomous Region (Ningxia) has mostly been limited to a single pathogen, and comprehensive data on mixed infections are unavailable. This study aimed to evaluate the zoonotic potential of these three protozoa. In this study, small subunit ribosomal RNA (SSU rRNA) and 60 kDa glycoprotein (gp60) genes of Cryptosporidium; internal transcribed spacer (ITS) gene of E. bieneusi; and SSU rRNA, glutamate dehydrogenase (gdh), triosephosphate isomerase (tpi), and beta-giardin (bg) genes of G. duodenalis were examined. DNA extraction, polymerase chain reaction, and sequence analysis were performed on fecal samples collected from 320 dairy cattle at three intensive dairy farms in Ningxia in 2021 to determine the prevalence and genetic characteristics of these three protozoa. The findings revealed that 61.56% (197/320) of the samples were infected with at least one protozoan. The overall prevalence of Cryptosporidium was 19.38% (62/320), E. bieneusi was 41.56% (133/320), and G. duodenalis was 29.38% (94/320). This study identified four Cryptosporidium species (C. bovis, C. andersoni, C. ryanae, and C. parvum) and the presence of mixed infections with two or three Cryptosporidium species. C. bovis was the dominant species in this study, while the dominant C. parvum subtypes were IIdA15G1 and IIdA20G1. The genotypes of E. bieneusis were J, BEB4, and I alongside the novel genotypes NX1-NX8, all belonging to group 2, with genotype J being dominant. G. duodenalis assemblages were identified as assemblages E, A, and B, and a mixed infection involving assemblages A + E was identified, with assemblage E being the dominant one. Concurrently, 11 isolates formed 10 different assemblage E multilocus genotypes (MLGs) and 1 assemblage A MLG and assemblage E MLGs formed 5 subgroups. To the best of our knowledge, this is the first report on mixed infection with two or three Cryptosporidium species in cattle in Ningxia and on the presence of the C. parvum subtype IIdA20G1 in this part of China. This study also discovered nine genotypes of E. bieneusis and novel features of G. duodenalis assemblages in Ningxia. This study indicates that dairy cattle in this region may play a significant role in the zoonotic transmission of Cryptosporidium spp., E. bieneusi, and G. duodenalis.

14.
BMC Nephrol ; 25(1): 125, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589792

RESUMO

BACKGROUND: Sepsis and acute kidney injury (AKI) are common severe diseases in the intensive care unit (ICU). This study aimed to estimate the attributable mortality of AKI among critically ill patients with sepsis and to assess whether AKI was an independent risk factor for 30-day mortality. METHODS: The information we used was derived from a multicenter prospective cohort study conducted in 18 Chinese ICUs, focusing on septic patients post ICU admission. The patients were categorized into two groups: those who developed AKI (AKI group) within seven days following a sepsis diagnosis and those who did not develop AKI (non-AKI group). Using propensity score matching (PSM), patients were matched 1:1 as AKI and non-AKI groups. We then calculated the mortality rate attributable to AKI in septic patients. Furthermore, a survival analysis was conducted comparing the matched AKI and non-AKI septic patients. The primary outcome of interest was the 30-day mortality rate following the diagnosis of sepsis. RESULTS: Out of the 2175 eligible septic patients, 61.7% developed AKI. After the application of PSM, a total of 784 septic patients who developed AKI were matched in a 1:1 ratio with 784 septic patients who did not develop AKI. The overall 30-day attributable mortality of AKI was 6.6% (95% CI 2.3 ∼ 10.9%, p = 0.002). A subgroup analysis revealed that the 30-day attributable mortality rates for stage 1, stage 2, and stage 3 AKI were 0.6% (95% CI -5.9 ∼ 7.2%, p = 0.846), 4.7% (95% CI -3.1 ∼ 12.4%, p = 0.221) and 16.8% (95% CI 8.1 ∼ 25.2%, p < 0.001), respectively. Particularly noteworthy was that stage 3 AKI emerged as an independent risk factor for 30-day mortality, possessing an adjusted hazard ratio of 1.80 (95% CI 1.31 ∼ 2.47, p < 0.001). CONCLUSIONS: The overall 30-day attributable mortality of AKI among critically ill patients with sepsis was 6.6%. Stage 3 AKI had the most significant contribution to 30-day mortality, while stage 1 and stage 2 AKI did not increase excess mortality.


Assuntos
Injúria Renal Aguda , Sepse , Humanos , Estudos Retrospectivos , Estudos Prospectivos , Estado Terminal , Injúria Renal Aguda/diagnóstico , Unidades de Terapia Intensiva , Sepse/complicações
15.
Ying Yong Sheng Tai Xue Bao ; 35(3): 827-836, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646771

RESUMO

The proportion and area of ratoon rice planting in China have been substantially increased, due to continuous improvement of rice breeding methods and consecutive innovation of cultivation technology, which has developed into one of rice planting modes with significant production efficiency. Combining the experience in research and practice, from the perspective of crop physiology and ecology, we reviewed the current situation and prospects of high-yielding formation and physiological mechanisms of ratoon rice. We focused on four key aspects: screening and breeding of ratoon rice cultivars and the classification; suitable stubble height for mechanically harvested ratoon rice, as well as water and fertilizer management; dry matter production and allocation in ratoon rice and the relationship with yield formation; regenerative activity and vigor of ratoon rice roots and their relationship with rhizosphere micro-ecological characteristics. As for the extending of mechanized low-cut stubbles ratoon rice technique, we should properly regulate the rhizosphere system, coordinate rhizosphere nutrient supply, germination of axillary buds, and tillering regeneration, to achieve the target of "four-high-one-low", that is high regeneration coefficient, high number of regeneration panicle, high harvest index, high yield, high quality, low-carbon and safe, aiming to improve the sustainability of ratoon rice industry.


Assuntos
Oryza , Oryza/crescimento & desenvolvimento , China , Produção Agrícola/métodos , Rizosfera , Melhoramento Vegetal , Agricultura/métodos , Fertilizantes , Raízes de Plantas/crescimento & desenvolvimento
16.
Eur J Pharmacol ; 971: 176524, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38561102

RESUMO

The present study aimed to explore how resveratrol (Res) confers myocardial protection by attenuating ferroptosis. In vivo and in vitro myocardial ischemia/reperfusion injury (MIRI) models were established, with or without Res pretreatment. The results showed that Res pretreatment effectively attenuated MIRI, as evidenced by increased cell viability, reduced lactate dehydrogenase activity, decreased infarct size, and maintained cardiac function. Moreover, Res pretreatment inhibited MIRI-induced ferroptosis, as shown by improved mitochondrial integrity, increased glutathione level, decreased prostaglandin-endoperoxide synthase 2 level, inhibited iron overload, and abnormal lipid peroxidation. Of note, Res pretreatment decreased or increased voltage-dependent anion channel 1/glutathione peroxidase 4 (VDAC1/GPX4) expression, which was increased or decreased via anoxia/reoxygenation (A/R) treatment, respectively. However, the overexpression of VDAC1 via pAd/VDAC1 and knockdown of GPX4 through Si-GPX4 reversed the protective effect of Res in A/R-induced H9c2 cells, whereas the inhibition of GPX4 with RSL3 abolished the protective effect of Res on mice treated with ischemia/reperfusion.Interestingly, knockdown of VDAC1 by Si-VDAC1 promoted the protective effect of Res on A/R-induced H9c2 cells and the regulation of GPX4. Finally, the direct interaction between VDAC1 and GPX4 was determined using co-immunoprecipitation. In conclusion, Res pretreatment could protect the myocardium against MIRI-induced ferroptosis via the VDAC1/GPX4 signaling pathway.


Assuntos
Ferroptose , Traumatismo por Reperfusão Miocárdica , Animais , Camundongos , Miócitos Cardíacos , Resveratrol/farmacologia , Canal de Ânion 1 Dependente de Voltagem , Isquemia , Hipóxia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Reperfusão
18.
Biomed Pharmacother ; 174: 116542, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574620

RESUMO

Previous studies have demonstrated that the underlying mechanisms of myocardial ischemia/reperfusion injury (MIRI) are complex and involve multiple types of regulatory cell death, including ferroptosis, apoptosis, and autophagy. Thus, we aimed to identify the mechanisms underlying MIRI and validate the protective role of epigallocatechin-3-gallate (EGCG) and its related mechanisms in MIRI. An in vivo and in vitro models of MIRI were constructed. The results showed that pretreatment with EGCG could attenuate MIRI, as indicated by increased cell viability, reduced lactate dehydrogenase (LDH) activity and apoptosis, inhibited iron overload, abnormal lipid metabolism, preserved mitochondrial function, decreased infarct size, maintained cardiac function, decreased reactive oxygen species (ROS) level, and reduced TUNEL-positive cells. Additionally, EGCG pretreatment could attenuate ferroptosis, apoptosis, and autophagy induced by MIRI via upregulating 14-3-3η protein levels. Furthermore, the protective effects of EGCG could be abolished with pAd/14-3-3η-shRNA or Compound C11 (a 14-3-3η inhibitor) but not pAd/NC-shRNA. In conclusion, EGCG pretreatment attenuated ferroptosis, apoptosis, and autophagy by mediating 14-3-3η and protected cardiomyocytes against MIRI.


Assuntos
Proteínas 14-3-3 , Apoptose , Autofagia , Catequina , Catequina/análogos & derivados , Ferroptose , Traumatismo por Reperfusão Miocárdica , Catequina/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Animais , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Proteínas 14-3-3/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Cardiotônicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Ratos Sprague-Dawley
19.
Angew Chem Int Ed Engl ; 63(27): e202402374, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38655601

RESUMO

The construction of secondary building units (SBUs) in versatile metal-organic frameworks (MOFs) represents a promising method for developing multi-functional materials, especially for improving their sensitizing ability. Herein, we developed a dual small molecules auxiliary strategy to construct a high-nuclear transition-metal-based UiO-architecture Co16-MOF-BDC with visible-light-absorbing capacity. Remarkably, the N3 - molecule in hexadecameric cobalt azide SBU offers novel modification sites to precise bonding of strong visible-light-absorbing chromophores via click reaction. The resulting Bodipy@Co16-MOF-BDC exhibits extremely high performance for oxidative coupling benzylamine (~100 % yield) via both energy and electron transfer processes, which is much superior to that of Co16-MOF-BDC (31.5 %) and Carboxyl @Co16-MOF-BDC (37.5 %). Systematic investigations reveal that the advantages of Bodipy@Co16-MOF-BDC in dual light-absorbing channels, robust bonding between Bodipy/Co16 clusters and efficient electron-hole separation can greatly boost photosynthesis. This work provides an ideal molecular platform for synergy between photosensitizing MOFs and chromophores by constructing high-nuclear transition-metal-based SBUs with surface-modifiable small molecules.

20.
Front Bioeng Biotechnol ; 12: 1337808, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681963

RESUMO

Introduction: Magnetic Resonance Imaging (MRI) is essential in diagnosing cervical spondylosis, providing detailed visualization of osseous and soft tissue structures in the cervical spine. However, manual measurements hinder the assessment of cervical spine sagittal balance, leading to time-consuming and error-prone processes. This study presents the Pyramid DBSCAN Simple Linear Iterative Cluster (PDB-SLIC), an automated segmentation algorithm for vertebral bodies in T2-weighted MR images, aiming to streamline sagittal balance assessment for spinal surgeons. Method: PDB-SLIC combines the SLIC superpixel segmentation algorithm with DBSCAN clustering and underwent rigorous testing using an extensive dataset of T2-weighted mid-sagittal MR images from 4,258 patients across ten hospitals in China. The efficacy of PDB-SLIC was compared against other algorithms and networks in terms of superpixel segmentation quality and vertebral body segmentation accuracy. Validation included a comparative analysis of manual and automated measurements of cervical sagittal parameters and scrutiny of PDB-SLIC's measurement stability across diverse hospital settings and MR scanning machines. Result: PDB-SLIC outperforms other algorithms in vertebral body segmentation quality, with high accuracy, recall, and Jaccard index. Minimal error deviation was observed compared to manual measurements, with correlation coefficients exceeding 95%. PDB-SLIC demonstrated commendable performance in processing cervical spine T2-weighted MR images from various hospital settings, MRI machines, and patient demographics. Discussion: The PDB-SLIC algorithm emerges as an accurate, objective, and efficient tool for evaluating cervical spine sagittal balance, providing valuable assistance to spinal surgeons in preoperative assessment, surgical strategy formulation, and prognostic inference. Additionally, it facilitates comprehensive measurement of sagittal balance parameters across diverse patient cohorts, contributing to the establishment of normative standards for cervical spine MR imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA