Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-147868

RESUMO

In the absence of a proven effective vaccine preventing infection by SARS-CoV-2, or a proven drug to treat COVID-19, the positive results of passive immune therapy using convalescent serum provides a strong lead. We have developed a new class of tetravalent, biparatopic therapy, 89C8-ACE2. It combines the specificity of a monoclonal antibody (89C8) that recognizes the relatively conserved N-terminal domain (NTD) of the viral S glycoprotein, and the ectodomain of ACE2, which binds to the receptor-binding domain (RBD) of S. This molecule shows exceptional performance in vitro, inhibiting the interaction of recombinant S1 to ACE2 and transduction of ACE2-overexpressing cells by S-pseudotyped lentivirus with IC50s substantially below 100 pM, and with potency approximately 100-fold greater than ACE2-Fc itself. Moreover, 89C8-ACE2 was able to neutralize authentic virus infection in a standard assay at low nanomolar concentrations, making this class of molecule a promising lead for therapeutic applications.

2.
Chinese Journal of Biotechnology ; (12): 1109-1123, 2017.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-242245

RESUMO

Arginine kinase (AK) is a key enzyme in energy metabolism of invertebrates and plays an important regulatory role in the life activities such as growth and development, nutrition utilization, immune resistance and stress response. Arginine kinase of Bombyx mori (BmAK) is related to the energy balance and anti-NPV process, but there is little research on its molecular structure and enzymatic properties. We cloned the ORF sequence of BmAK gene, and analyzed chromosomal localization, genomic structure, mRNA structure, secondary and tertiary structure. Phylogenetic analysis indicated that AK was highly conserved in evolution. Soluble recombinant BmAK was obtained by prokaryotic expression, and purified by Ni-NTA affinity chromatography. The circular dichroism spectroscopy showed that BmAK contained α-helix structures, and its α-helix structures were relatively stable in the pH range between 5 and 10. Enzyme activity analysis showed that the optimum temperature of BmAK was 30 ℃ and the optimum pH of BmAK was 7.5. The optimal temperature of BmAK was 25 ℃. Between 15 ℃ and 30 ℃, the structure and activity of BmAK was relatively stable. The structure of BmAK was relatively stable at pH 7.0. Our findings reveal the structure and function of BmAK to develop novel green safe and environmentally friendly insecticides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...