Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
3.
Cancer Cell ; 42(4): 583-604.e11, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38458187

RESUMO

ARID1A, a subunit of the canonical BAF nucleosome remodeling complex, is commonly mutated in lymphomas. We show that ARID1A orchestrates B cell fate during the germinal center (GC) response, facilitating cooperative and sequential binding of PU.1 and NF-kB at crucial genes for cytokine and CD40 signaling. The absence of ARID1A tilts GC cell fate toward immature IgM+CD80-PD-L2- memory B cells, known for their potential to re-enter new GCs. When combined with BCL2 oncogene, ARID1A haploinsufficiency hastens the progression of aggressive follicular lymphomas (FLs) in mice. Patients with FL with ARID1A-inactivating mutations preferentially display an immature memory B cell-like state with increased transformation risk to aggressive disease. These observations offer mechanistic understanding into the emergence of both indolent and aggressive ARID1A-mutant lymphomas through the formation of immature memory-like clonal precursors. Lastly, we demonstrate that ARID1A mutation induces synthetic lethality to SMARCA2/4 inhibition, paving the way for potential precision therapy for high-risk patients.


Assuntos
Linfoma , Células B de Memória , Animais , Humanos , Camundongos , Proteínas de Ligação a DNA/genética , Linfoma/genética , Mutação , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
J Clin Oncol ; 42(9): 1077-1087, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38113419

RESUMO

PURPOSE: About a third of patients with relapsed or refractory classic Hodgkin lymphoma (r/r CHL) succumb to their disease after high-dose chemotherapy followed by autologous stem-cell transplantation (HDC/ASCT). Here, we aimed to describe spatially resolved tumor microenvironment (TME) ecosystems to establish novel biomarkers associated with treatment failure in r/r CHL. PATIENTS AND METHODS: We performed imaging mass cytometry (IMC) on 71 paired primary diagnostic and relapse biopsies using a marker panel specific to CHL biology. For each cell type in the TME, we calculated a spatial score measuring the distance of nearest neighbor cells to the malignant Hodgkin Reed Sternberg cells within the close interaction range. Spatial scores were used as features in prognostic model development for post-ASCT outcomes. RESULTS: Highly multiplexed IMC data revealed shared TME patterns in paired diagnostic and early r/r CHL samples, whereas TME patterns were more divergent in pairs of diagnostic and late relapse samples. Integrated analysis of IMC and single-cell RNA sequencing data identified unique architecture defined by CXCR5+ Hodgkin and Reed Sternberg (HRS) cells and their strong spatial relationship with CXCL13+ macrophages in the TME. We developed a prognostic assay (RHL4S) using four spatially resolved parameters, CXCR5+ HRS cells, PD1+CD4+ T cells, CD68+ tumor-associated macrophages, and CXCR5+ B cells, which effectively separated patients into high-risk versus low-risk groups with significantly different post-ASCT outcomes. The RHL4S assay was validated in an independent r/r CHL cohort using a multicolor immunofluorescence assay. CONCLUSION: We identified the interaction of CXCR5+ HRS cells with ligand-expressing CXCL13+ macrophages as a prominent crosstalk axis in relapsed CHL. Harnessing this TME biology, we developed a novel prognostic model applicable to r/r CHL biopsies, RHL4S, opening new avenues for spatial biomarker development.


Assuntos
Doença de Hodgkin , Humanos , Doença de Hodgkin/tratamento farmacológico , Microambiente Tumoral , Ecossistema , Recidiva Local de Neoplasia , Resultado do Tratamento , Recidiva
5.
Bioinformatics ; 39(39 Suppl 1): i131-i139, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37387130

RESUMO

MOTIVATION: Recent advances in spatial proteomics technologies have enabled the profiling of dozens of proteins in thousands of single cells in situ. This has created the opportunity to move beyond quantifying the composition of cell types in tissue, and instead probe the spatial relationships between cells. However, most current methods for clustering data from these assays only consider the expression values of cells and ignore the spatial context. Furthermore, existing approaches do not account for prior information about the expected cell populations in a sample. RESULTS: To address these shortcomings, we developed SpatialSort, a spatially aware Bayesian clustering approach that allows for the incorporation of prior biological knowledge. Our method is able to account for the affinities of cells of different types to neighbour in space, and by incorporating prior information about expected cell populations, it is able to simultaneously improve clustering accuracy and perform automated annotation of clusters. Using synthetic and real data, we show that by using spatial and prior information SpatialSort improves clustering accuracy. We also demonstrate how SpatialSort can perform label transfer between spatial and nonspatial modalities through the analysis of a real world diffuse large B-cell lymphoma dataset. AVAILABILITY AND IMPLEMENTATION: Source code is available on Github at: https://github.com/Roth-Lab/SpatialSort.


Assuntos
Linfoma Difuso de Grandes Células B , Proteômica , Humanos , Teorema de Bayes , Bioensaio , Análise por Conglomerados
6.
iScience ; 26(6): 106795, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37213235

RESUMO

Runt-related transcription factor 1 (RUNX1) is oncogenic in diverse types of leukemia and epithelial cancers where its expression is associated with poor prognosis. Current models suggest that RUNX1 cooperates with other oncogenic factors (e.g., NOTCH1, TAL1) to drive the expression of proto-oncogenes in T cell acute lymphoblastic leukemia (T-ALL) but the molecular mechanisms controlled by RUNX1 and its cooperation with other factors remain unclear. Integrative chromatin and transcriptional analysis following inhibition of RUNX1 and NOTCH1 revealed a surprisingly widespread role of RUNX1 in the establishment of global H3K27ac levels and that RUNX1 is required by NOTCH1 for cooperative transcription activation of key NOTCH1 target genes including MYC, DTX1, HES4, IL7R, and NOTCH3. Super-enhancers were preferentially sensitive to RUNX1 knockdown and RUNX1-dependent super-enhancers were disrupted following the treatment of a pan-BET inhibitor, I-BET151.

7.
Leukemia ; 37(4): 728-740, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36797416

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematopoietic neoplasm resulting from the malignant transformation of T-cell progenitors. While activating NOTCH1 mutations are the dominant genetic drivers of T-ALL, epigenetic dysfunction plays a central role in the pathology of T-ALL and can provide alternative mechanisms to oncogenesis in lieu of or in combination with genetic mutations. The histone demethylase enzyme KDM6A (UTX) is also recurrently mutated in T-ALL patients and functions as a tumor suppressor. However, its gene paralog, KDM6B (JMJD3), is never mutated and can be significantly overexpressed, suggesting it may be necessary for sustaining the disease. Here, we used mouse and human T-ALL models to show that KDM6B is required for T-ALL development and maintenance. Using NOTCH1 gain-of-function retroviral models, mouse cells genetically deficient for Kdm6b were unable to propagate T-ALL. Inactivating KDM6B in human T-ALL patient cells by CRISPR/Cas9 showed KDM6B-targeted cells were significantly outcompeted over time. The dependence of T-ALL cells on KDM6B was proportional to the oncogenic strength of NOTCH1 mutation, with KDM6B required to prevent stress-induced apoptosis from strong NOTCH1 signaling. These studies identify a crucial role for KDM6B in sustaining NOTCH1-driven T-ALL and implicate KDM6B as a novel therapeutic target in these patients.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animais , Humanos , Camundongos , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Genes Supressores de Tumor , Histona Desmetilases com o Domínio Jumonji/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptor Notch1/genética , Transdução de Sinais
8.
Blood ; 141(13): 1597-1609, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36315912

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is a T-cell malignancy characterized by cell subsets and enriched with leukemia-initiating cells (LICs). ß-Catenin modulates LIC activity in T-ALL. However, its role in maintaining established leukemia stem cells remains largely unknown. To identify functionally relevant protein interactions of ß-catenin in T-ALL, we performed coimmunoprecipitation followed by liquid chromatography-mass spectrometry. Here, we report that a noncanonical functional interaction of ß-catenin with the Forkhead box O3 (FOXO3) transcription factor positively regulates LIC-related genes, including the cyclin-dependent kinase 4, which is a crucial modulator of cell cycle and tumor maintenance. We also confirm the relevance of these findings using stably integrated fluorescent reporters of ß-catenin and FOXO3 activity in patient-derived xenografts, which identify minor subpopulations with enriched LIC activity. In addition, gene expression data at the single-cell level of leukemic cells of primary patients at the time of diagnosis and minimal residual disease (MRD) up to 30 days after the standard treatments reveal that the expression of ß-catenin- and FOXO3-dependent genes is present in the CD82+CD117+ cell fraction, which is substantially enriched with LICs in MRD as well as in early T-cell precursor ALL. These findings highlight key functional roles for ß-catenin and FOXO3 and suggest novel therapeutic strategies to eradicate aggressive cell subsets in T-ALL.


Assuntos
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células T Precursoras , beta Catenina , Humanos , beta Catenina/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia
9.
Nat Commun ; 13(1): 6772, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36351924

RESUMO

Follicular lymphoma (FL) is an indolent cancer of mature B-cells but with ongoing risk of transformation to more aggressive histology over time. Recurrent mutations associated with transformation have been identified; however, prognostic features that can be discerned at diagnosis could be clinically useful. We present here comprehensive profiling of both tumor and immune compartments in 155 diagnostic FL biopsies at single-cell resolution by mass cytometry. This revealed a diversity of phenotypes but included two recurrent patterns, one which closely resembles germinal center B-cells (GCB) and another which appears more related to memory B-cells (MB). GCB-type tumors are enriched for EZH2, TNFRSF14, and MEF2B mutations, while MB-type tumors contain increased follicular helper T-cells. MB-type and intratumoral phenotypic diversity are independently associated with increased risk of transformation, supporting biological relevance of these features. Notably, a reduced 26-marker panel retains sufficient information to allow phenotypic profiling of future cohorts by conventional flow cytometry.


Assuntos
Linfoma Folicular , Humanos , Linfoma Folicular/genética , Células B de Memória , Centro Germinativo , Linfócitos B , Mutação
10.
Blood ; 139(16): 2483-2498, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35020836

RESUMO

NOTCH1 is a well-established lineage specifier for T cells and among the most frequently mutated genes throughout all subclasses of T cell acute lymphoblastic leukemia (T-ALL). How oncogenic NOTCH1 signaling launches a leukemia-prone chromatin landscape during T-ALL initiation is unknown. Here we demonstrate an essential role for the high-mobility-group transcription factor Tcf1 in orchestrating chromatin accessibility and topology, allowing aberrant Notch1 signaling to convey its oncogenic function. Although essential, Tcf1 is not sufficient to initiate leukemia. The formation of a leukemia-prone epigenetic landscape at the distal Notch1-regulated Myc enhancer, which is fundamental to this disease, is Tcf1-dependent and occurs within the earliest progenitor stage even before cells adopt a T lymphocyte or leukemic fate. Moreover, we discovered a unique evolutionarily conserved Tcf1-regulated enhancer element in the distal Myc-enhancer, which is important for the transition of preleukemic cells to full-blown disease.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Carcinogênese/genética , Linhagem Celular Tumoral , Cromatina/genética , Humanos , Oncogenes , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Receptor Notch1/genética
11.
Bioinform Adv ; 1(1): vbab021, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34806017

RESUMO

MOTIVATION: B cells display remarkable diversity in producing B-cell receptors through recombination of immunoglobulin (Ig) V-D-J genes. Somatic hypermutation (SHM) of immunoglobulin heavy chain variable (IGHV) genes are used as a prognostic marker in B-cell malignancies. Clinically, IGHV mutation status is determined by targeted Sanger sequencing which is a resource-intensive and low-throughput procedure. Here, we describe a bioinformatic pipeline, CRIS (Complete Reconstruction of Immunoglobulin IGHV-D-J Sequences) that uses RNA sequencing (RNA-seq) datasets to reconstruct IGHV-D-J sequences and determine IGHV SHM status. RESULTS: CRIS extracts RNA-seq reads aligned to Ig gene loci, performs assembly of Ig transcripts and aligns the resulting contigs to reference Ig sequences to enumerate and classify SHMs in the IGHV gene sequence. CRIS improves on existing tools that infer the B-cell receptor repertoire from RNA-seq data using a portion IGHV gene segment by de novo assembly. We show that the SHM status identified by CRIS using the entire IGHV gene segment is highly concordant with clinical classification in three independent chronic lymphocytic leukemia patient cohorts. AVAILABILITY AND IMPLEMENTATION: The CRIS pipeline is available under the MIT License from https://github.com/Rashedul/CRIS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Advances online.

12.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34615710

RESUMO

Lymphocyte-rich classic Hodgkin lymphoma (LR-CHL) is a rare subtype of Hodgkin lymphoma. Recent technical advances have allowed for the characterization of specific cross-talk mechanisms between malignant Hodgkin Reed-Sternberg (HRS) cells and different normal immune cells in the tumor microenvironment (TME) of CHL. However, the TME of LR-CHL has not yet been characterized at single-cell resolution. Here, using single-cell RNA sequencing (scRNA-seq), we examined the immune cell profile of 8 cell suspension samples of LR-CHL in comparison to 20 samples of the mixed cellularity (MC, 9 cases) and nodular sclerosis (NS, 11 cases) subtypes of CHL, as well as 5 reactive lymph node controls. We also performed multicolor immunofluorescence (MC-IF) on tissue microarrays from the same patients and an independent validation cohort of 31 pretreatment LR-CHL samples. ScRNA-seq analysis identified a unique CD4+ helper T cell subset in LR-CHL characterized by high expression of Chemokine C-X-C motif ligand 13 (CXCL13) and PD-1. PD-1+CXCL13+ T cells were significantly enriched in LR-CHL compared to other CHL subtypes, and spatial analyses revealed that in 46% of the LR-CHL cases these cells formed rosettes surrounding HRS cells. MC-IF analysis revealed CXCR5+ normal B cells in close proximity to CXCL13+ T cells at significantly higher levels in LR-CHL. Moreover, the abundance of PD-1+CXCL13+ T cells in the TME was significantly associated with shorter progression-free survival in LR-CHL (P = 0.032). Taken together, our findings strongly suggest the pathogenic importance of the CXCL13/CXCR5 axis and PD-1+CXCL13+ T cells as a treatment target in LR-CHL.


Assuntos
Linfócitos B/metabolismo , Quimiocina CXCL13/metabolismo , Doença de Hodgkin/patologia , Receptores CXCR5/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Antígeno B7-H1/metabolismo , Imunofluorescência , Humanos , Linfonodos/citologia , Receptor de Morte Celular Programada 1/metabolismo , RNA-Seq , Células de Reed-Sternberg/patologia , Análise de Célula Única , Microambiente Tumoral/imunologia
14.
Cancer Res ; 81(16): 4165-4173, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33414170

RESUMO

The concept that different leukemias are developmentally distinct and, like in normal hematopoiesis, generated by restricted populations of cells named leukemia-initiating cells (LIC), is becoming more established. These cancer stem-like cells have been assumed to have unique properties, including the capability of self-renewing and giving rise to "differentiated" or non-LICs that make up the whole tumor. Cell populations enriched with LIC activity have been characterized in different hematopoietic malignancies, including human acute lymphoblastic leukemia (ALL). Related studies have also demonstrated that LICs are functionally distinct from bulk cells and modulated by distinct molecular signaling pathways and epigenetic mechanisms. Here we review several biological and clinical aspects related to LICs in ALL, including (i) immunophenotypic characterization of LIC-enriched subsets in human and mouse models of ALL, (ii) emerging therapeutics against regulatory signaling pathways involved in LIC progression and maintenance in T- and B-cell leukemias, (iii) novel epigenetic and age-related mechanisms of LIC propagation, and (iv) ongoing efforts in immunotherapy to eradicate LIC-enriched cell subsets in relapsed and refractory ALL cases. Current conventional treatments do not efficiently eliminate LICs. Therefore, innovative therapeutics that exclusively target LICs hold great promise for developing an effective cure for ALL.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia/metabolismo , Células-Tronco Neoplásicas/citologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Animais , Linfócitos B/citologia , Modelos Animais de Doenças , Progressão da Doença , Epigênese Genética , Homeostase , Humanos , Imunofenotipagem , Camundongos , Indução de Remissão , Transdução de Sinais , Processos Estocásticos , Linfócitos T/metabolismo
16.
Blood ; 136(24): 2764-2773, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33301029

RESUMO

Hematopoietic clones with leukemogenic mutations arise in healthy people as they age, but progression to acute myeloid leukemia (AML) is rare. Recent evidence suggests that the microenvironment may play an important role in modulating human AML population dynamics. To investigate this concept further, we examined the combined and separate effects of an oncogene (c-MYC) and exposure to interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), and stem cell factor (SCF) on the experimental genesis of a human AML in xenografted immunodeficient mice. Initial experiments showed that normal human CD34+ blood cells transduced with a lentiviral MYC vector and then transplanted into immunodeficient mice produced a hierarchically organized, rapidly fatal, and serially transplantable blast population, phenotypically and transcriptionally similar to human AML cells, but only in mice producing IL-3, GM-CSF, and SCF transgenically or in regular mice in which the cells were exposed to IL-3 or GM-CSF delivered using a cotransduction strategy. In their absence, the MYC+ human cells produced a normal repertoire of lymphoid and myeloid progeny in transplanted mice for many months, but, on transfer to secondary mice producing the human cytokines, the MYC+ cells rapidly generated AML. Indistinguishable diseases were also obtained efficiently from both primitive (CD34+CD38-) and late granulocyte-macrophage progenitor (GMP) cells. These findings underscore the critical role that these cytokines can play in activating a malignant state in normally differentiating human hematopoietic cells in which MYC expression has been deregulated. They also introduce a robust experimental model of human leukemogenesis to further elucidate key mechanisms involved and test strategies to suppress them.


Assuntos
Regulação Leucêmica da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-3/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Transplante de Neoplasias
17.
Cell ; 182(2): 297-316.e27, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32619424

RESUMO

The most aggressive B cell lymphomas frequently manifest extranodal distribution and carry somatic mutations in the poorly characterized gene TBL1XR1. Here, we show that TBL1XR1 mutations skew the humoral immune response toward generating abnormal immature memory B cells (MB), while impairing plasma cell differentiation. At the molecular level, TBL1XR1 mutants co-opt SMRT/HDAC3 repressor complexes toward binding the MB cell transcription factor (TF) BACH2 at the expense of the germinal center (GC) TF BCL6, leading to pre-memory transcriptional reprogramming and cell-fate bias. Upon antigen recall, TBL1XR1 mutant MB cells fail to differentiate into plasma cells and instead preferentially reenter new GC reactions, providing evidence for a cyclic reentry lymphomagenesis mechanism. Ultimately, TBL1XR1 alterations lead to a striking extranodal immunoblastic lymphoma phenotype that mimics the human disease. Both human and murine lymphomas feature expanded MB-like cell populations, consistent with a MB-cell origin and delineating an unforeseen pathway for malignant transformation of the immune system.


Assuntos
Memória Imunológica/fisiologia , Linfoma Difuso de Grandes Células B/patologia , Proteínas Nucleares/genética , Células Precursoras de Linfócitos B/imunologia , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Repressoras/genética , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cromatina/química , Cromatina/metabolismo , Centro Germinativo/citologia , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Histona Desacetilases/metabolismo , Humanos , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Correpressor 2 de Receptor Nuclear/química , Correpressor 2 de Receptor Nuclear/metabolismo , Células Precursoras de Linfócitos B/citologia , Células Precursoras de Linfócitos B/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-6/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Transcrição Gênica
18.
J Mol Diagn ; 22(4): 571-578, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32036086

RESUMO

NOTCH1 is recurrently mutated in chronic lymphocytic leukemia (CLL), most commonly as a 2-bp frameshift deletion (c.7541_7542delCT). This mutated allele encodes a truncated form of the receptor (p.P2514Rfs∗4) lacking the C-terminal proline, glutamic acid, serine, and threonine (PEST) degradation domain that increases NOTCH1 signaling duration. NOTCH1 mutation has been associated with poor clinical outcomes in CLL. We validated a highly sensitive and quantitative droplet digital PCR assay for the NOTCH1 delCT mutation, which was anticipated to perform well compared with Sanger sequencing and allele-specific PCR. Performance characteristics of this assay were tested on 126 samples from an unselected CLL cohort and a separate cohort of 85 samples from patients with trisomy 12 CLL. The delCT mutation was detected at allele frequencies as low as 0.024%; 25% of unselected cases and 55% of trisomy 12 cases were positive at the 0.024% detection threshold. Mutational burdens ≥1% were significantly associated with shorter overall survival (OS) in patients with trisomy 12+ disease in multivariate analysis (median OS, 9.1 versus 13 years, with hazard ratio of 2.34; P = 0.031). Mutational burdens <1% correlated with shorter OS in univariate, but not multivariate, analyses. These results suggest that droplet digital PCR testing for NOTCH1 delCT mutation may aid in risk stratification and/or disease monitoring in certain subsets of patients with CLL.


Assuntos
Alelos , Frequência do Gene , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/mortalidade , Mutação , Receptor Notch1/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Genótipo , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/epidemiologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Sensibilidade e Especificidade
19.
Nat Med ; 26(4): 577-588, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32094924

RESUMO

Transmembrane protein 30A (TMEM30A) maintains the asymmetric distribution of phosphatidylserine, an integral component of the cell membrane and 'eat-me' signal recognized by macrophages. Integrative genomic and transcriptomic analysis of diffuse large B-cell lymphoma (DLBCL) from the British Columbia population-based registry uncovered recurrent biallelic TMEM30A loss-of-function mutations, which were associated with a favorable outcome and uniquely observed in DLBCL. Using TMEM30A-knockout systems, increased accumulation of chemotherapy drugs was observed in TMEM30A-knockout cell lines and TMEM30A-mutated primary cells, explaining the improved treatment outcome. Furthermore, we found increased tumor-associated macrophages and an enhanced effect of anti-CD47 blockade limiting tumor growth in TMEM30A-knockout models. By contrast, we show that TMEM30A loss-of-function increases B-cell signaling following antigen stimulation-a mechanism conferring selective advantage during B-cell lymphoma development. Our data highlight a multifaceted role for TMEM30A in B-cell lymphomagenesis, and characterize intrinsic and extrinsic vulnerabilities of cancer cells that can be therapeutically exploited.


Assuntos
Transformação Celular Neoplásica/genética , Mutação com Perda de Função , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/terapia , Proteínas de Membrana/genética , Terapia de Alvo Molecular , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Colúmbia Britânica/epidemiologia , Células Cultivadas , Estudos de Coortes , Feminino , Predisposição Genética para Doença , Células HEK293 , Humanos , Células Jurkat , Mutação com Perda de Função/genética , Linfoma Difuso de Grandes Células B/epidemiologia , Linfoma Difuso de Grandes Células B/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Pessoa de Meia-Idade , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Adulto Jovem
20.
Cancer Discov ; 10(3): 406-421, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31857391

RESUMO

Hodgkin lymphoma is characterized by an extensively dominant tumor microenvironment (TME) composed of different types of noncancerous immune cells with rare malignant cells. Characterization of the cellular components and their spatial relationship is crucial to understanding cross-talk and therapeutic targeting in the TME. We performed single-cell RNA sequencing of more than 127,000 cells from 22 Hodgkin lymphoma tissue specimens and 5 reactive lymph nodes, profiling for the first time the phenotype of the Hodgkin lymphoma-specific immune microenvironment at single-cell resolution. Single-cell expression profiling identified a novel Hodgkin lymphoma-associated subset of T cells with prominent expression of the inhibitory receptor LAG3, and functional analyses established this LAG3+ T-cell population as a mediator of immunosuppression. Multiplexed spatial assessment of immune cells in the microenvironment also revealed increased LAG3+ T cells in the direct vicinity of MHC class II-deficient tumor cells. Our findings provide novel insights into TME biology and suggest new approaches to immune-checkpoint targeting in Hodgkin lymphoma. SIGNIFICANCE: We provide detailed functional and spatial characteristics of immune cells in classic Hodgkin lymphoma at single-cell resolution. Specifically, we identified a regulatory T-cell-like immunosuppressive subset of LAG3+ T cells contributing to the immune-escape phenotype. Our insights aid in the development of novel biomarkers and combination treatment strategies targeting immune checkpoints.See related commentary by Fisher and Oh, p. 342.This article is highlighted in the In This Issue feature, p. 327.


Assuntos
Doença de Hodgkin/genética , Análise de Célula Única , Transcriptoma/genética , Microambiente Tumoral/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Doença de Hodgkin/patologia , Humanos , Masculino , Análise de Sequência de RNA , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia , Linfócitos T Reguladores/imunologia , Transcriptoma/imunologia , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...