Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Haematologica ; 108(10): 2626-2638, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37078252

RESUMO

BCL-XL and BCL-2 are key anti-apoptotic proteins and validated cancer targets. 753B is a novel BCL-XL/BCL-2 proteolysis targeting chimera (PROTAC) that targets both BCL-XL and BCL-2 to the von Hippel-Lindau (VHL) E3 ligase, leading to BCLX L/BCL-2 ubiquitination and degradation selectively in cells expressing VHL. Because platelets lack VHL expression, 753B spares on-target platelet toxicity caused by the first-generation dual BCL-XL/BCL-2 inhibitor navitoclax (ABT-263). Here, we report pre-clinical single-agent activity of 753B against different leukemia subsets. 753B effectively reduced cell viability and induced dose-dependent degradation of BCL-XL and BCL-2 in a subset of hematopoietic cell lines, acute myeloid leukemia (AML) primary samples, and in vivo patient-derived xenograft AML models. We further demonstrated the senolytic activity of 753B, which enhanced the efficacy of chemotherapy by targeting chemotherapy-induced cellular senescence. These results provide a pre-clinical rationale for the utility of 753B in AML therapy, and suggest that 753B could produce an added therapeutic benefit by overcoming cellular senescence-induced chemoresistance when combined with chemotherapy.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Proteína bcl-X/genética , Proteínas Proto-Oncogênicas c-bcl-2 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Senescência Celular , Linhagem Celular Tumoral , Apoptose
3.
Signal Transduct Target Ther ; 7(1): 51, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35185150

RESUMO

Despite high initial response rates, acute myeloid leukemia (AML) treated with the BCL-2-selective inhibitor venetoclax (VEN) alone or in combinations commonly acquires resistance. We performed gene/protein expression, metabolomic and methylation analyses of isogenic AML cell lines sensitive or resistant to VEN, and identified the activation of RAS/MAPK pathway, leading to increased stability and higher levels of MCL-1 protein, as a major acquired mechanism of VEN resistance. MCL-1 sustained survival and maintained mitochondrial respiration in VEN-RE cells, which had impaired electron transport chain (ETC) complex II activity, and MCL-1 silencing or pharmacologic inhibition restored VEN sensitivity. In support of the importance of RAS/MAPK activation, we found by single-cell DNA sequencing rapid clonal selection of RAS-mutated clones in AML patients treated with VEN-containing regimens. In summary, these findings establish RAS/MAPK/MCL-1 and mitochondrial fitness as key survival mechanisms of VEN-RE AML and provide the rationale for combinatorial strategies effectively targeting these pathways.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Leucemia Mieloide Aguda , Sistema de Sinalização das MAP Quinases , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2 , Sulfonamidas , Proteínas ras , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/farmacologia
4.
Reproduction ; 146(4): 363-76, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23884860

RESUMO

Ionizing radiation has been shown to arrest spermatogenesis despite the presence of surviving stem spermatogonia, by blocking their differentiation. This block is a result of damage to the somatic environment and is reversed when gonadotropins and testosterone are suppressed, but the mechanisms are still unknown. We examined spermatogonial differentiation and Sertoli cell factors that regulate spermatogonia after irradiation, during hormone suppression, and after hormone suppression combined with Leydig cell elimination with ethane dimethane sulfonate. These results showed that the numbers and cytoplasmic structure of Sertoli cells are unaffected by irradiation, only a few type A undifferentiated (Aund) spermatogonia and even fewer type A1 spermatogonia remained, and immunohistochemical analysis showed that Sertoli cells still produced KIT ligand (KITLG) and glial cell line-derived neurotrophic factor (GDNF). Some of these cells expressed KIT receptor, demonstrating that the failure of differentiation was not a result of the absence of the KIT system. Hormone suppression resulted in an increase in Aund spermatogonia within 3 days, a gradual increase in KIT-positive spermatogonia, and differentiation mainly to A3 spermatogonia after 2 weeks. KITL (KITLG) protein expression did not change after hormone suppression, indicating that it is not a factor in the stimulation. However, GDNF increased steadily after hormone suppression, which was unexpected since GDNF is supposed to promote stem spermatogonial self-renewal and not differentiation. We conclude that the primary cause of the block in spermatogonial development is not due to Sertoli cell factors such (KITL\GDNF) or the KIT receptor. As elimination of Leydig cells in addition to hormone suppression resulted in differentiation to the A3 stage within 1 week, Leydig cell factors were not necessary for spermatogonial differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Células Intersticiais do Testículo/metabolismo , Células de Sertoli/metabolismo , Espermatogênese/fisiologia , Espermatogônias/fisiologia , Fator de Células-Tronco/metabolismo , Testosterona/farmacologia , Androgênios/farmacologia , Animais , Diferenciação Celular/efeitos da radiação , Células Cultivadas , Técnicas Imunoenzimáticas , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/efeitos da radiação , Masculino , Ratos , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/efeitos da radiação , Espermatogênese/efeitos dos fármacos , Espermatogênese/efeitos da radiação , Espermatogônias/efeitos dos fármacos , Espermatogônias/efeitos da radiação
5.
PLoS One ; 7(2): e32064, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22348147

RESUMO

The prevalence of testicular germ cell tumors (TGCT), a common solid tissue malignancy in young men, has been annually increasing at an alarming rate of 3%. Since the majority of testicular cancers are derived from germ cells at the stage of transformation of primordial germ cell (PGC) into gonocytes, the increase has been attributed to maternal/fetal exposures to environmental factors. We examined the effects of an estrogen (diethylstilbestrol, DES), an antiandrogen (flutamide), or radiation on the incidence of testicular germ cell tumors in genetically predisposed 129.MOLF-L1 (L1) congenic mice by exposing them to these agents on days 10.5 and 11.5 of pregnancy. Neither flutamide nor DES produced noticeable increases in testis cancer incidence at 4 weeks of age. In contrast, two doses of 0.8-Gy radiation increased the incidence of TGCT from 45% to 100% in the offspring. The percentage of mice with bilateral tumors, weights of testes with TGCT, and the percentage of tumors that were clearly teratomas were higher in the irradiated mice than in controls, indicating that irradiation induced more aggressive tumors and/or more foci of initiation sites in each testis. This radiation dose did not disrupt spermatogenesis, which was qualitatively normal in tumor-free testes although they were reduced in size. This is the first proof of induction of testicular cancer by an environmental agent and suggests that the male fetus of women exposed to radiation at about 5-6 weeks of pregnancy might have an increased risk of developing testicular cancer. Furthermore, it provides a novel tool for studying the molecular and cellular events of testicular cancer pathogenesis.


Assuntos
Feto/efeitos da radiação , Efeitos Tardios da Exposição Pré-Natal , Neoplasias Testiculares/etiologia , Antagonistas de Androgênios/toxicidade , Animais , Dietilestilbestrol/toxicidade , Estrogênios não Esteroides/toxicidade , Feminino , Flutamida/toxicidade , Predisposição Genética para Doença , Masculino , Exposição Materna , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética
6.
Toxicol Sci ; 126(2): 545-53, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22273744

RESUMO

Previous studies with Lewis/Brown-Norway (BN) F1 hybrid rats indicated that spermatogenesis was much more sensitive to ionizing radiation than in the widely studied outbred Sprague Dawley stock, suggesting that there were genetically based differences; however, the relative sensitivities of various inbred strains had not been established. As a first step to defining the genes responsible for these differences, we compared the sensitivities of seven rat strains to radiation damage of spermatogenesis. Recovery of spermatogenesis was examined 10 weeks after 5-Gy irradiation of seven strains (BN, Lewis, Long-Evans, Wistar Kyoto, spontaneously hypertensive [SHR], Fischer 344, and Sprague Dawley). The percentages of tubules containing differentiated cells and testicular sperm counts showed that BN and Lewis were most sensitive to radiation (< 2% of tubules recovered, < 2 × 10(5) late spermatids per testis), Long-Evans, Wistar Kyoto, Fischer, and SHR were more resistant, and Sprague Dawley was the most resistant (98% of tubules recovered, 2 × 10(7) late spermatids per testis). Although increases in intratesticular testosterone levels and interstitial fluid volume after irradiation had been suggested as factors inhibiting recovery of spermatogenesis, neither appeared to correlate with the radiation sensitivity of spermatogenesis in these strains. In all strains, the atrophic tubules without differentiated germ cells nevertheless showed the presence of type A spermatogonia, indicating that their differentiation was blocked. Thus, we conclude that the differences in radiation sensitivity of recovery of spermatogenesis between rat strains of different genetic backgrounds can be accounted for by differences in the extent of the radiation-induced block of spermatogonial differentiation.


Assuntos
Tolerância a Radiação , Espermatogênese/efeitos da radiação , Animais , Masculino , Ratos , Ratos Endogâmicos , Especificidade da Espécie , Contagem de Espermatozoides
7.
Reprod Toxicol ; 32(4): 395-406, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22001253

RESUMO

Spermatogenesis is sensitive to the chemotherapeutic drug cyclophosphamide, which decreases the patients' sperm count. Since the recovery of fertility is dependent on regeneration from stem cells, in the present study we evaluated the ability of cyclophosphamide-exposed stem spermatogonia from mice to regenerate spermatogenesis in situ and after transplantation. When seven doses of cyclophosphamide were given at 4-day intervals, the differentiating germ cells were largely eliminated but ~50% of the undifferentiated type A spermatogonia remained. We monitored the recovery and found that sperm production recovered to 64% of control within the time expected. When the cyclophosphamide-surviving spermatogonia were transplanted into recipient mice, recovery of spermatogenesis from the cyclophosphamide-exposed donor cells was observed, but was reduced when compared to cells from cryptorchid donors. Thus, multidose regimens of cyclophosphamide did not eliminate the stem spermatogonia, but resulted in cell loss and residual damage.


Assuntos
Antineoplásicos Alquilantes/administração & dosagem , Ciclofosfamida/administração & dosagem , Espermatogênese/efeitos dos fármacos , Espermatogônias/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Apoptose , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Epitélio Seminífero/citologia , Contagem de Espermatozoides , Espermatogônias/citologia , Espermatogônias/transplante , Testículo/citologia
8.
Endocrinology ; 152(9): 3504-14, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21733828

RESUMO

Why both testosterone (T) suppression and cryptorchidism reverse the block in spermatogonial differentiation in adult mice homozygous for the juvenile spermatogonial depletion (jsd) mutation has been a conundrum. To resolve this conundrum, we analyzed interrelations between T suppression, testicular temperature, and spermatogonial differentiation and used in vitro techniques to separate the effects of the two treatments on the spermatogonial differentiation block in jsd mice. Temporal analysis revealed that surgical cryptorchidism rapidly stimulated spermatogonial differentiation whereas androgen ablation treatment produced a delayed and gradual differentiation. The androgen suppression caused scrotal shrinkage, significantly increasing the intrascrotal temperature. When serum T or intratesticular T (ITT) levels were modulated separately in GnRH antagonist-treated mice by exogenous delivery of T or LH, respectively, the inhibition of spermatogonial differentiation correlated with the serum T and not with ITT levels. Thus, the block must be caused by peripheral androgen action. When testicular explants from jsd mice were cultured in vitro at 32.5 C, spermatogonial differentiation was not observed, but at 37 C significant differentiation was evident. In contrast, addition of T to the culture medium did not block the stimulation of spermatogonial differentiation at 37 C, and androgen ablation with aminoglutethimide and hydroxyflutamide did not stimulate differentiation at 32.5 C, suggesting that T had no direct effect on spermatogonial differentiation in jsd mice. These data show that elevation of temperature directly overcomes the spermatogonial differentiation block in adult jsd mice and that T suppression acts indirectly in vivo by causing scrotal regression and thereby elevating the testicular temperature.


Assuntos
Androgênios/farmacologia , Temperatura Corporal/efeitos dos fármacos , Ribonucleoproteínas Nucleolares Pequenas/genética , Espermatogênese/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testosterona/farmacologia , Animais , Temperatura Corporal/fisiologia , Criptorquidismo , Homozigoto , Hormônio Luteinizante/farmacologia , Masculino , Camundongos , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Escroto/efeitos dos fármacos , Escroto/fisiologia , Espermatogênese/fisiologia , Espermatogônias/efeitos dos fármacos , Espermatogônias/fisiologia , Testículo/fisiologia
9.
Biol Reprod ; 85(4): 823-33, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21653891

RESUMO

Despite numerous observations of the effects of estrogens on spermatogenesis, identification of estrogen-regulated genes in the testis is limited. Using rats in which irradiation had completely blocked spermatogonial differentiation, we previously showed that testosterone suppression with gonadotropin-releasing hormone-antagonist acyline and the antiandrogen flutamide stimulated spermatogenic recovery and that addition of estradiol (E2) to this regimen accelerated this recovery. We report here the global changes in testicular cell gene expression induced by the E2 treatment. By minimizing the changes in other hormones and using concurrent data on regulation of the genes by these hormones, we were able to dissect the effects of estrogen on gene expression, independent of gonadotropin or testosterone changes. Expression of 20 genes, largely in somatic cells, was up- or downregulated between 2- and 5-fold by E2. The unexpected and striking enrichment of transcripts not corresponding to known genes among the E2-downregulated probes suggested that these might represent noncoding mRNAs; indeed, we have identified several as miRNAs and their potential target genes in this system. We propose that genes for which expression levels are altered in one direction by irradiation and in the opposite direction by both testosterone suppression and E2 treatment are candidates for controlling the block in differentiation. Several genes, including insulin-like 3 (Insl3), satisfied those criteria. If they are indeed involved in the inhibition of spermatogonial differentiation, they may be candidate targets for treatments to enhance recovery of spermatogenesis following gonadotoxic exposures, such as those resulting from cancer therapy.


Assuntos
Estradiol/uso terapêutico , Estrogênios/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Espermatogênese/efeitos da radiação , Testículo/efeitos dos fármacos , Testículo/metabolismo , Antagonistas de Androgênios/uso terapêutico , Animais , Cruzamentos Genéticos , Quimioterapia Combinada , Flutamida/uso terapêutico , Raios gama , Regulação da Expressão Gênica/efeitos da radiação , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Antagonistas de Hormônios/uso terapêutico , Insulina/genética , Insulina/metabolismo , Masculino , MicroRNAs/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oligopeptídeos/uso terapêutico , Proteínas/genética , Proteínas/metabolismo , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos Lew , Testículo/patologia , Testículo/efeitos da radiação , Testosterona/antagonistas & inibidores
10.
Biol Reprod ; 84(2): 400-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21312389

RESUMO

Spermatogenesis is dependent primarily on testosterone action on the Sertoli cells, but the molecular mechanisms have not been identified. Attempts to identify testosterone-regulated target genes in Sertoli cells have used microarray analysis of gene expression in mice lacking the androgen receptor (AR) in Sertoli cells (SCARKO) and wild-type mice, but the analyses have been complicated both by alteration of germ cell composition of the testis when pubertal or adult mice were used and by differences in Sertoli-cell gene expression from the expression in adults when prepubertal mice were used. To overcome these limitations and identify AR-regulated genes in adult Sertoli cells, we compared gene expression in adult jsd (Utp14b jsd/jsd, juvenile spermatogonial depletion) mouse testes and with that in SCARKO-jsd mouse testes, since their cellular compositions are essentially identical, consisting of only type A spermatogonia and somatic cells. Microarray analysis identified 157 genes as downregulated and 197 genes as upregulated in the SCARKO-jsd mice compared to jsd mice. Some of the AR-regulated genes identified in the previous studies, including Rhox5, Drd4, and Fhod3, were also AR regulated in the jsd testes, but others, such as proteases and components of junctional complexes, were not AR regulated in our model. Surprisingly, a set of germ cell­specific genes preferentially expressed in differentiated spermatogonia and meiotic cells, including Meig1, Sycp3, and Ddx4, were all upregulated about 2-fold in SCARKO-jsd testes. AR-regulated genes in Sertoli cells must therefore be involved in the regulation of spermatogonial differentiation, although there was no significant differentiation to spermatocytes in SCARKO-jsd mice. Further gene ontogeny analysis revealed sets of genes whose changes in expression may be involved in the dislocation of Sertoli cell nuclei in SCARKO-jsd testes.


Assuntos
Expressão Gênica , Mutação , Receptores Androgênicos/deficiência , Ribonucleoproteínas Nucleolares Pequenas/genética , Células de Sertoli/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/fisiologia , RNA Helicases DEAD-box/metabolismo , Proteínas de Ligação a DNA , Feminino , Masculino , Meiose , Camundongos , Camundongos Knockout , Análise em Microsséries , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Células de Sertoli/citologia , Espermatócitos/citologia , Espermatogônias/citologia , Testículo , Regulação para Cima
11.
J Leukoc Biol ; 88(5): 849-61, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20628068

RESUMO

DCs play critical roles in promotion of autoimmunity or immune tolerance as potent APCs. In our anti-GBM GN model, WKY rats develop severe T cell-mediated glomerular inflammation followed by fibrosis. A DC-like cell population (CD8αα(+)CD11c(+)MHC-II(+)ED1(-)) was identified in the inflamed glomeruli. Chimera experiments demonstrated that the CD8αα(+) cells were derived from BM. The CD8αα(+) cells infiltrated glomeruli at a late stage (Days 28-35), coincident with a rapid decline in glomerular inflammation before fibrosis. The CD8αα(+) cells isolated from inflamed glomeruli were able to migrate rapidly from the bloodstream into inflamed glomeruli but not into normal glomeruli, suggesting that the migration was triggered by local inflammation. Despite high-level expression of surface and cellular MHC class II molecules, in vitro experiments showed that this CD8αα(+) DC-like cell induced apoptosis but not proliferation in antigen-specific CD4(+) T cells from T cell lines or freshly isolated from lymph nodes; they were not able to do so in the absence of antigens, suggesting induction of apoptosis was antigen-specific. Furthermore, apoptotic T cells were detected in a large number in the glomeruli at Day 32, coincident with the infiltration of the cells into glomeruli, suggesting that the cells may also induce T cell apoptosis in vivo. A potential role of this CD8αα(+) DC-like population in peripheral immune tolerance and/or termination of autoimmune inflammation was discussed.


Assuntos
Células da Medula Óssea/imunologia , Antígenos CD8/análise , Células Dendríticas/imunologia , Inflamação/imunologia , Linfócitos T/imunologia , Animais , Apoptose/imunologia , Antígenos CD11/isolamento & purificação , Antígenos CD8/isolamento & purificação , Morte Celular , Linhagem Celular , Sobrevivência Celular , Feminino , Glomérulos Renais/imunologia , Linfócitos/imunologia , Ratos , Ratos Wistar , Linfócitos T/citologia
12.
Biol Reprod ; 83(5): 759-66, 2010 11.
Artigo em Inglês | MEDLINE | ID: mdl-20650881

RESUMO

Spermatogenesis is dependent primarily on testosterone action on the Sertoli cells, but the molecular mechanisms have not been identified. Attempts to identify testosterone-regulated target genes in Sertoli cells have used microarray analysis of gene expression in mice lacking the androgen receptor (AR) in Sertoli cells (SCARKO) and wild-type mice, but the analyses have been complicated both by alteration of germ cell composition of the testis when pubertal or adult mice were used and by differences in Sertoli-cell gene expression from the expression in adults when prepubertal mice were used. To overcome these limitations and identify AR-regulated genes in adult Sertoli cells, we compared gene expression in adult jsd (Utp14b(jsd/jsd), juvenile spermatogonial depletion) mouse testes and with that in SCARKO-jsd mouse testes, since their cellular compositions are essentially identical, consisting of only type A spermatogonia and somatic cells. Microarray analysis identified 157 genes as downregulated and 197 genes as upregulated in the SCARKO-jsd mice compared to jsd mice. Some of the AR-regulated genes identified in the previous studies, including Rhox5, Drd4, and Fhod3, were also AR regulated in the jsd testes, but others, such as proteases and components of junctional complexes, were not AR regulated in our model. Surprisingly, a set of germ cell-specific genes preferentially expressed in differentiated spermatogonia and meiotic cells, including Meig1, Sycp3, and Ddx4, were all upregulated about 2-fold in SCARKO-jsd testes. AR-regulated genes in Sertoli cells must therefore be involved in the regulation of spermatogonial differentiation, although there was no significant differentiation from spermatocytes in SCARKO-jsd mice. Further gene ontogeny analysis revealed sets of genes whose changes in expression may be involved in the dislocation of Sertoli cell nuclei in SCARKO-jsd testes.


Assuntos
Regulação da Expressão Gênica , Receptores Androgênicos/fisiologia , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Células de Sertoli/metabolismo , Espermatogênese , Animais , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Camundongos Transgênicos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , RNA Mensageiro/metabolismo , Receptores Androgênicos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonucleoproteínas Nucleolares Pequenas/genética , Testículo/citologia , Testículo/metabolismo , Testosterona/metabolismo
13.
Toxicol Sci ; 117(1): 225-37, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20584762

RESUMO

Irradiation interrupts spermatogenesis and causes prolonged sterility in male mammals. Hormonal suppression treatment with gonadotropin-releasing hormone (GnRH) analogues has restored spermatogenesis in irradiated rats, but similar attempts were unsuccessful in irradiated mice, monkeys, and humans. In this study, we tested a stronger hormonal suppression regimen (the GnRH antagonist, acyline, and plus flutamide) for efficacy both in restoring endogenous spermatogenesis and in enhancing colonization of transplanted stem spermatogonia in mouse testes irradiated with a total doses between 10.5 and 13.5 Gy. A 4-week hormonal suppression treatment, given immediately after irradiation, increased endogenous spermatogenic recovery 1.5-fold, and 11-week hormonal suppression produced twofold increases compared with sham-treated irradiated controls. Furthermore, 10-week hormonal suppression restored fertility from endogenous surviving spermatogonial stem cells in 90% of 10.5-Gy irradiated mice, whereas only 10% were fertile without hormonal suppression. Four- and 11-week hormonal suppression also enhanced spermatogenic development from transplanted stem spermatogonia in irradiated recipient mice, by 3.1- and 4.8-fold, respectively, compared with those not given hormonal treatment. Moreover, the 10-week hormonal suppression regimen, but not a sham treatment, restored fertility of some 13.5-Gy irradiated recipient mice from donor-derived spermatogonial stem cells. This is the first report of hormonal suppression inducing recovery of endogenous spermatogenesis and fertility in a mouse model treated with anticancer agents. The combination of spermatogonial transplantation with hormonal suppression should be investigated as a treatment to restore fertility in young men after cytotoxic cancer therapy.


Assuntos
Antagonistas de Androgênios/uso terapêutico , Hormônio Liberador de Gonadotropina/uso terapêutico , Infertilidade Masculina/terapia , Espermatogônias/transplante , Testículo/efeitos da radiação , Animais , Infertilidade Masculina/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espermatogênese , Testosterona/sangue
14.
Biol Reprod ; 82(1): 54-65, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19684331

RESUMO

Although gonadotropins and androgen are required for normal spermatogenesis and both testosterone and follicle-stimulating hormone (FSH) are responsible for the inhibition of spermatogonial differentiation that occurs in irradiated rats, it has been difficult to identify the specific genes involved. To study specific hormonally regulated changes in somatic cell gene expression in the testis that may be involved in these processes, without the complication of changing populations of germ cells, we used irradiated LBNF(1) rats, the testes of which contain almost exclusively somatic cells except for a few type A spermatogonia. Three different groups of these rats were treated with various combinations of gonadotropin-releasing hormone antagonist, an androgen receptor antagonist (flutamide), testosterone, and FSH, and we compared the gene expression levels 2 wk later to those of irradiated-only rats by microarray analysis. By dividing the gene expression patterns into three major patterns and 11 subpatterns, we successfully distinguished, in a single study, the genes that were specifically regulated by testosterone, by luteinizing hormone (LH), and by FSH from the large number of genes that were not hormonally regulated in the testis. We found that hormones produced more dramatic upregulation than downregulation of gene expression: Testosterone had the strongest upregulatory effect, LH had a modest but appreciable upregulatory effect, and FSH had a minor upregulatory effect. We also separately identified the somatic cell genes that were chronically upregulated by irradiation. Thus, the present study identified gene expression changes that may be responsible for hormonal action on somatic cells to support normal spermatogenesis and the hormone-mediated block in spermatogonial development after irradiation.


Assuntos
Hormônio Foliculoestimulante/metabolismo , Regulação da Expressão Gênica , Hormônio Luteinizante/metabolismo , Testículo/metabolismo , Testosterona/farmacologia , Animais , Flutamida/farmacologia , Raios gama , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Células Germinativas/efeitos dos fármacos , Células Germinativas/metabolismo , Células Germinativas/efeitos da radiação , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Oligopeptídeos/farmacologia , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Testículo/efeitos dos fármacos , Testículo/efeitos da radiação , Testosterona/sangue
15.
J Androl ; 30(3): 338-48, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19136388

RESUMO

Testosterone acting through the androgen receptor (AR) maintains the arrest of spermatogonial differentiation in juvenile spermatogonial depletion (jsd mutation in the Utp14b gene) mutant adult male mice. It is not known which of the somatic cell types expressing AR mediates this inhibition. To determine whether Sertoli cells are responsible, we selectively eliminated AR in Sertoli cells in jsd mice containing a floxed-Ar gene and an anti-Müllerian hormone-Cre transgene. In these Sertoli AR-knockout (SCARKO)-jsd mice, spermatogonial differentiation did not recover. However, the normal organization of Sertoli cell nuclei was drastically disrupted in SCARKO-jsd mice compared with SCARKO or jsd mice. In addition, the extent of ectoplasmic specializations was reduced; tight junctions were not found; vinculin, an anchoring protein found in ectoplasmic specializations, became uniformly distributed in the cytoplasm; and the adult Sertoli cells showed excess heterochromatin subjacent to their nuclear envelope. Despite the abnormalities in Sertoli cells in SCARKO-jsd mice, global suppression of testosterone action and levels was still effective in restoring the differentiated germ cells, and this was accompanied by an improved arrangement of Sertoli cell nuclei. We conclude that Sertoli cells are not targets for the testosterone-mediated inhibition of spermatogonial differentiation in jsd mice, and that both AR in Sertoli cells and the presence of differentiated germ cells contribute to maintaining the organization of Sertoli cells within the seminiferous tubules.


Assuntos
Receptores Androgênicos/metabolismo , Células de Sertoli/citologia , Células de Sertoli/metabolismo , Espermatogênese/fisiologia , Testosterona/metabolismo , Animais , Diferenciação Celular/fisiologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Receptores Androgênicos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espermatogônias/citologia , Espermatogônias/metabolismo
16.
J Androl ; 30(4): 440-51, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19136390

RESUMO

Irradiation of LBNF(1) rat testes induces spermatogonial differentiation arrest, which can be reversed by gonadotropin-releasing hormone (GnRH) antagonist-induced suppression of intratesticular testosterone (ITT) and follicle-stimulating hormone (FSH). Although exogenous estrogen treatment also enhanced spermatogenic recovery, as measured by the tubule differentiation index (TDI), it was not clear whether estrogen stimulated spermatogonial differentiation only by further suppressing ITT or by an additional independent mechanism as well. To resolve this question, we performed the following experiments. At 15 weeks after irradiation, rats were treated with GnRH antagonist; some also received 17beta-estradiol (E2) and were killed 4 weeks later. GnRH antagonist treatment increased the TDI from 0% to 8%, and addition of E2 further increased the TDI to 39%. However, E2 addition further reduced ITT from 7 ng/g testis, observed with GnRH antagonist to 3 ng/g testis, so decreased ITT levels might have contributed to recovery. Next GnRH antagonist-treated rats were given exogenous testosterone and flutamide to stabilize ITT levels and block its action. This increased TDI slightly from 8% to 13%, but the further addition of E2 significantly raised the TDI to 27%, indicating it acted by a mechanism independent of ITT levels. Plots of TDI for all treatment groups compared with ITT, FSH, or a linear combination of ITT and FSH showed that treatments including E2 produced higher TDI values than did treatments without E2. These results indicate that there was an effect of E2 on spermatogonial differentiation because of an additional direct action on the testis that is unrelated to its suppression of testosterone or gonadotropins.


Assuntos
Estradiol/farmacologia , Espermatogênese/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/efeitos da radiação , Antagonistas de Androgênios/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Estradiol/metabolismo , Flutamida/farmacologia , Hormônio Foliculoestimulante/sangue , Masculino , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Espermatogênese/efeitos da radiação , Espermatogônias/efeitos dos fármacos , Testosterona/antagonistas & inibidores , Testosterona/farmacologia
17.
Endocrinology ; 149(6): 2773-81, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18356279

RESUMO

In adult male mice homozygous for the juvenile spermatogonial depletion (Utp14b jsd) mutation in the Utp14b gene, type A spermatogonia proliferate, but in the presence of testosterone and at scrotal temperatures, these spermatogonia undergo apoptosis just before differentiation. In an attempt to delineate this apoptotic pathway in jsd mice and specifically address the roles of p53- and Fas ligand (FasL) /Fas receptor-mediated apoptosis, we produced jsd mice deficient in p53, Fas, or FasL. Already at the age of 5 wk, less degeneration of spermatogenesis was observed in p53-null-jsd mice than jsd single mutants, and in 8- or 12-wk-old mice, the percentage of seminiferous tubules showing differentiated germ cells [tubule differentiation index (TDI)] was 26-29% in the p53-null-jsd mice, compared with 2-4% in jsd mutants with normal p53. The TDI in jsd mice heterozygous for p53 showed an intermediate TDI of 8-13%. The increase in the differentiated tubules in double-mutant and p53 heterozygous jsd mice was mostly attributable to intermediate and type B spermatogonia; few spermatocytes were present. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling staining showed that most of these differentiated spermatogonia still underwent apoptosis, thereby blocking further continuation of spermatogenesis. In contrast, the percentage of tubules that were differentiated was not significantly altered in either adult Fas null-jsd mice or adult FasL defective gld-jsd double mutant mice as compared with jsd single mutants. Furthermore, caspase-9, but not caspase-8 was immunochemically localized in the adult jsd mice spermatogonia undergoing apoptosis. The results show that p53, but not FasL or Fas, is involved in the apoptosis of type A spermatogonia before/during differentiation in jsd mice that involves the intrinsic pathway of apoptosis. However, apoptosis in the later stages must be a p53-independent process.


Assuntos
Ribonucleoproteínas Nucleolares Pequenas/genética , Espermatogônias/citologia , Proteína Supressora de Tumor p53/genética , Animais , Apoptose , Criptorquidismo/patologia , Proteína Ligante Fas/genética , Células Germinativas/citologia , Células Germinativas/fisiologia , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Knockout , Ribonucleoproteínas Nucleolares Pequenas/deficiência , Espermatogônias/fisiologia , Testículo/citologia , Testículo/fisiologia , Receptor fas/genética
18.
Biol Reprod ; 77(2): 237-46, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17475932

RESUMO

Male mice that are homozygous for the juvenile spermatogonial depletion (jsd) mutation in the Utp14b gene undergo several waves of spermatogenesis. However, spermatogonial differentiation ceases and in adults, spermatogonia are the only germ cells that remain. To understand further the blockage in spermatogonial differentiation in Utp14b(jsd) mutant mice, we correlated the rate and severity of spermatogonial depletion and the restoration of spermatogenesis following the suppression of testosterone or elevation of testicular temperature with the genetic background. Testes from Utp14b(jsd) mutant mice on B6, C3H, and mixed C3H-B6-129 (HB129) genetic backgrounds all showed steady decreases in the numbers of normal spermatogonia between 8 wk and 20 wk of age. The percentages of tubules with differentiating germ cells were higher and the spermatogonia were more advanced in C3H- background than in B6- or HB129-background Utp14b(jsd) mice. Genetic crosses showed that the source of the Y chromosome was a major factor in determining the severity of spermatogonial depletion in Utp14b(jsd) mutant mice. When Utp14b(jsd) mutants were subjected to total androgen ablation or unilateral cryptorchidization, spermatogenic development recovered markedly in the C3H and HB129 background but showed less recovery in the B6-background mice. The differences noted between the strains in terms of the severity of spermatogonial depletion were not dependent upon testosterone level or scrotal temperature but correlated with the magnitudes of the effects of elevated temperature on normal and Utp14b(jsd) mutant spermatogenic cells. Thus, the abilities of germ cells in certain strains to survive elevated temperatures may be related to their abilities to maintain some degree of differentiation potential after the Utp14b(jsd) gene is mutated.


Assuntos
Diferenciação Celular/genética , Mutação/genética , Ribonucleoproteínas Nucleolares Pequenas/genética , Espermatogônias/citologia , Envelhecimento , Animais , Temperatura Corporal , Contagem de Células , Mapeamento Cromossômico , Cruzamentos Genéticos , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Heterozigoto , Homozigoto , Masculino , Camundongos , Camundongos Endogâmicos C3H , Escroto , Especificidade da Espécie , Espermatogênese/efeitos dos fármacos , Espermatogênese/genética , Testículo/química , Testosterona/análise , Testosterona/sangue , Cromossomo Y/genética
19.
Endocrinology ; 147(7): 3563-70, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16627582

RESUMO

The jsd mice experience a single wave of spermatogenesis, followed by an arrest of spermatogenesis because of a block in spermatogonial differentiation. Previous pharmacological and surgical studies have indicated that testosterone (T) and low scrotal temperatures but not FSH block spermatogonial differentiation in jsd mice. We sought to test these observations by genetic approaches by producing male jsd mutant mice with either defective androgen receptor (AR, Tfm mutation) or a deficiency of FSH (fshb(-/-)). In adult jsd-Tfm double-mutant mice, the tubule differentiation index was 95% compared with 14% in jsd littermates, suggesting that general ablation of AR function restored spermatogonial differentiation in jsd mice. The results indicated that this enhancement of differentiation was primarily a result of elevation of temperature caused by the cryptorchid position of the testis in jsd-Tfm double-mutant mice, which resulted from the lack of AR in the gubernaculum. The low levels of T were not a factor in the release of the spermatogonial differentiation block in the jsd-Tfm mice, but we were unable to determine whether inactivation of AR in the adult jsd testis had a direct effect on the restoration of spermatogonial differentiation because the elevated temperature bypassed the T-induced block in spermatogonial differentiation. Although spermatogonia were indeed present in adult jsd-fshb double-mutant mice and were capable of differentiation after androgen deprivation, these mice had a tubule differentiation index of 0%, ruling out the possibility that endogenous FSH inhibited spermatogonial differentiation in jsd mice. The results are consistent in support of the hypothesis that inhibition of spermatogonial differentiation in jsd mice is a result of T acting through the AR only at scrotal temperatures.


Assuntos
Hormônio Foliculoestimulante/genética , Mutação , Receptores Androgênicos/genética , Ribonucleoproteínas Nucleolares Pequenas/genética , Espermatogônias/citologia , Animais , Diferenciação Celular , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ribonucleoproteínas Nucleolares Pequenas/fisiologia , Espermatogônias/metabolismo , Testículo/metabolismo
20.
Endocrinology ; 147(1): 472-82, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16210366

RESUMO

Simultaneous suppression of both testosterone and FSH with GnRH antagonists (GnRH-ant) reverses the radiation-induced block in spermatogonial differentiation in F1 hybrids of Lewis and Brown-Norway rats. Although addition of exogenous testosterone restores the block, it also raises FSH, and hence it had not been possible to conclusively determine which hormone was inhibiting spermatogonial differentiation. In the present study, we establish the relative roles of testosterone and FSH in this inhibition using three different approaches. The first approach involved the treatment of irradiated rats, in which differentiation was stimulated by GnRH-ant plus flutamide, with FSH for 2 wk; the FSH reduced the percentage of tubules that were differentiated (TDI) by about 2-fold, indicating that FSH does have an inhibitory role. The second approach involved treatment of irradiated, hypophysectomized rats with exogenous testosterone for 10 wk; testosterone also reduced the TDI, demonstrating that testosterone had a definite inhibitory effect, independent of pituitary hormones. Furthermore, in this protocol we showed that TDI in the hypophysectomized testosterone-treated group, which had higher intratesticular testosterone levels but lacked FSH, was slightly higher than the TDI in a GnRH-antagonist-testosterone-treated group of irradiated rats, which had normal physiological levels of FSH; this result supports a role for endogenous FSH in suppressing spermatogonial differentiation in the latter group. The third approach involved injection of an active anti-FSH antibody for 10 d in untreated, GnRH-ant plus flutamide-treated, or GnRH-ant plus testosterone-treated irradiated rats. This was not sufficient to increase the TDI. However, flutamide given in a similar treatment schedule did increase the TDI in GnRH-ant plus testosterone-treated rats. We conclude that both testosterone and FSH individually inhibit spermatogonial differentiation after irradiation, but testosterone is a more highly potent inhibitor than is FSH.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Hormônio Foliculoestimulante/farmacologia , Espermatogônias/citologia , Espermatogônias/efeitos da radiação , Testosterona/farmacologia , Animais , Flutamida/farmacologia , Humanos , Hipofisectomia , Masculino , Ratos , Proteínas Recombinantes/farmacologia , Espermatogônias/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA