Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 24(12): 103506, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34934925

RESUMO

Long-term memory (LTM) formation requires consolidation processes to overcome interfering signals that erode memory formation. Olfactory memory in Drosophila involves convergent projection neuron (PN; odor) and dopaminergic neuron (DAN; reinforcement) input to the mushroom body (MB). How post-training DAN activity in the posterior lateral protocerebrum (PPL1) continues to regulate memory consolidation remains unknown. Here we address this question using targeted transgenes in behavior and electrophysiology experiments to show that (1) persistent post-training activity of PPL1-α2α'2 and PPL1-α3 DANs interferes with aversive LTM formation; (2) neuropeptide F (NPF) signaling blocks this interference in PPL1-α2α'2 and PPL1-α3 DANs after spaced training to enable LTM formation; and (3) training-induced NPF release and neurotransmission from two upstream dorsal-anterior-lateral (DAL2) neurons are required to form LTM. Thus, NPF signals from DAL2 neurons to specific PPL1 DANs disinhibit the memory circuit, ensuring that periodic events are remembered as consolidated LTM.

2.
Neurophotonics ; 4(3): 031211, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28523281

RESUMO

Electrical properties of neuronal processes are extraordinarily complex, dynamic, and, in the general case, impossible to predict in the absence of detailed measurements. To obtain such a measurement one would, ideally, like to be able to monitor electrical subthreshold events as they travel from synapses on distal dendrites and summate at particular locations to initiate action potentials. It is now possible to carry out these measurements at the scale of individual dendritic spines using voltage imaging. In these measurements, the voltage-sensitive probes can be thought of as transmembrane voltmeters with a linear scale, which directly monitor electrical signals. Grinvald et al. were important early contributors to the methodology of voltage imaging, and they pioneered some of its significant results. We combined voltage imaging and glutamate uncaging using computer-generated holography. The results demonstrated that patterned illumination, by reducing the surface area of illuminated membrane, reduces photodynamic damage. Additionally, region-specific illumination practically eliminated the contamination of optical signals from individual spines by the scattered light from the parent dendrite. Finally, patterned illumination allowed one-photon uncaging of glutamate on multiple spines to be carried out in parallel with voltage imaging from the parent dendrite and neighboring spines.

3.
J Physiol ; 591(19): 4843-58, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23940377

RESUMO

Glutamatergic transmission onto oligodendrocyte precursor cells (OPCs) may regulate OPC proliferation, migration and differentiation. Dendritic integration of excitatory postsynaptic potentials (EPSPs) is critical for neuronal functions, and mechanisms regulating dendritic propagation and summation of EPSPs are well understood. However, little is known about EPSP attenuation and integration in OPCs. We developed realistic OPC models for synaptic integration, based on passive membrane responses of OPCs obtained by simultaneous dual whole-cell patch-pipette recordings. Compared with neurons, OPCs have a very low value of membrane resistivity, which is largely mediated by Ba(2+)- and bupivacaine-sensitive background K(+) conductances. The very low membrane resistivity not only leads to rapid EPSP attenuation along OPC processes but also sharpens EPSPs and narrows the temporal window for EPSP summation. Thus, background K(+) conductances regulate synaptic responses and integration in OPCs, thereby affecting activity-dependent neuronal control of OPC development and function.


Assuntos
Bário/farmacologia , Bupivacaína/farmacologia , Potenciais Pós-Sinápticos Excitadores , Células-Tronco Neurais/fisiologia , Oligodendroglia/fisiologia , Potássio/metabolismo , Animais , Masculino , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Oligodendroglia/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ratos , Ratos Sprague-Dawley , Sinapses/metabolismo , Sinapses/fisiologia
4.
J Neurosci ; 33(5): 1828-32, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23365222

RESUMO

Acid-sensing ion channel-1a (ASIC1a) is localized in brain regions with high synaptic density and is thought to contribute to synaptic plasticity, learning, and memory. A prominent hypothesis is that activation of postsynaptic ASICs promotes depolarization, thereby augmenting N-methyl-d-aspartate receptor function and contributing to the induction of long-term potentiation (LTP). However, evidence for activation of postsynaptic ASICs during neurotransmission has not been established. Here, we re-examined the role of ASIC1a in LTP in the hippocampus using pharmacological and genetic approaches. Our results showed that a tarantula peptide psalmotoxin, which profoundly blocked ASIC currents in the hippocampal neurons, had no effect on LTP. Similarly, normal LTP was robustly generated in ASIC1a-null mice. A further behavioral analysis showed that mice lacking ASIC1a had normal performance in hippocampus-dependent spatial memory. In summary, our results indicate that ASIC1a is not required for hippocampal LTP and spatial memory. We therefore propose that the role of ASIC1a in LTP and spatial learning should be reassessed.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Canais Iônicos Sensíveis a Ácido/metabolismo , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Aprendizagem em Labirinto/fisiologia , Canais Iônicos Sensíveis a Ácido/genética , Animais , Feminino , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Knockout , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
5.
J Neurosci ; 30(19): 6548-58, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20463218

RESUMO

Acid-sensing ion channels (ASICs), a member of the degenerin/epithelial Na+ channel superfamily, are widely expressed in the mammalian CNS. Accumulating evidence suggests that ASIC current density is higher in GABAergic interneurons than that in glutamatergic pyramidal neurons (PNs) in the hippocampus. Such differential expression of ASICs in cortical networks is thought to be a key element for seizure termination. However, GABAergic interneurons are highly diverse; it is unclear whether the functional expression of ASICs differs in distinct GABAergic interneuron subtypes. Moreover, the subunit composition of ASICs in individual GABAergic interneurons remains unknown. By combining patch-clamp recording and single-cell reverse transcription (RT)-PCR analysis, we correlated ASIC currents with their gene expression in acute rat hippocampal slices. The results yielded several surprising findings. First, ASIC current density of oriens lacunosum-moleculare (O-LM) cells in the CA1 region, a classical type of dendrite-targeting interneuron, is 6 times greater than that of fast-spiking basket cells (BCs) in the dentate gyrus, a major class of soma-targeting interneuron. Second, the recovery of ASICs from desensitization is slowest in BCs, intermediate in PNs, and fastest in O-LM cells. Third, the tarantula venom psalmotoxin 1, the specific blocker for ASIC1a homomers, inhibits ASIC currents in BCs but not in O-LM cells. Finally, single-cell RT-PCR analysis reveals coexpression of ASIC1a and ASIC2 subunit transcripts in O-LM cells, whereas only ASIC1a subunit transcript is detected in most BCs. Thus, differential expression of ASICs in inhibitory microcircuits likely contributes to the distinct roles of GABAergic interneurons in normal physiology and pathophysiology.


Assuntos
Hipocampo/fisiologia , Interneurônios/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/fisiologia , Giro Denteado/efeitos dos fármacos , Giro Denteado/fisiologia , Expressão Gênica , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Interneurônios/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canais de Sódio/genética , Venenos de Aranha/farmacologia , Ácido gama-Aminobutírico/metabolismo
6.
J Neurosci ; 28(13): 3277-90, 2008 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-18367595

RESUMO

Huntington's disease (HD) is a hereditary neurological disease caused by expended CAG repeats in the HD gene, which codes for a protein called Huntingtin (Htt). The resultant mutant Huntingtin (mHtt) forms aggregates in neurons and causes neuronal dysfunction. In astrocytes, the largest population of brain cells, mHtt also exists. We report herein that astrocyte-conditioned medium (ACM) collected from astrocytes of R6/2 mice (a mouse model of HD) caused primary cortical neurons to grow less-mature neurites, migrate more slowly, and exhibit lower calcium influx after depolarization than those maintained in wild-type (WT) ACM. Using a cytokine antibody array and ELISA assays, we demonstrated that the amount of a chemokine [chemokine (C-C motif) ligand 5 (CCL5)/regulated on activation normal T cell expressed and secreted (RANTES)] released by R6/2 astrocytes was much less than that by WT astrocytes. When cortical neurons were treated with the indicated ACM, supplementation with recombinant CCL5/RANTES ameliorated the neuronal deficiency caused by HD-ACM, whereas removing CCL5/RANTES from WT-ACM using an anti-CCL5/RANTES antibody mimicked the effects evoked by HD-ACM. Quantitative PCR and promoter analyses demonstrated that mHtt hindered the activation of the CCL5/RANTES promoter by reducing the availability of nuclear factor kappaB-p65 and, hence, reduced the transcript level of CCL5/RANTES. Moreover, ELISA assays and immunocytochemical staining revealed that mHtt retained the residual CCL5/RANTES inside R6/2 astrocytes. In line with the above findings, elevated cytosolic CCL5/RANTES levels were also observed in the brains of two mouse models of HD [R6/2 and Hdh((CAG)150)] and human HD patients. These findings suggest that mHtt hinders one major trophic function of astrocytes which might contribute to the neuronal dysfunction of HD.


Assuntos
Astrócitos/metabolismo , Quimiocina CCL5/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Neurônios/metabolismo , Proteínas Nucleares/fisiologia , Expansão das Repetições de Trinucleotídeos/fisiologia , Idoso , Idoso de 80 Anos ou mais , Animais , Animais Recém-Nascidos , Astrócitos/química , Encéfalo/patologia , Cálcio/metabolismo , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Quimiocina CCL2/metabolismo , Imunoprecipitação da Cromatina/métodos , Meios de Cultivo Condicionados/farmacologia , Embrião de Mamíferos , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Proteína Huntingtina , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Proteínas Nucleares/genética , Ratos , Ratos Sprague-Dawley , Transfecção/métodos , Expansão das Repetições de Trinucleotídeos/genética
7.
J Cell Biochem ; 104(2): 554-67, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18072286

RESUMO

A physiological concentration of extracellular ATP stimulated biphasic Ca(2+) signal, and the Ca(2+) transient was decreased and the Ca(2+) sustain was eliminated immediately after removal of ATP and Ca(2+) in RBA-2 astrocytes. Reintroduction of Ca(2+) induced Ca(2+) sustain. Stimulation of P2Y(1) receptors with 2-methylthioadenosine 5'-diphosphate (2MeSADP) also induced a biphasic Ca(2+) signaling and the Ca(2+) sustains were eliminated using Ca(2+)-free buffer. The 2MeSADP-mediated biphasic Ca(2+) signals were inhibited by phospholipase C (PLC) inhibitor U73122, and completely blocked by P2Y(1) selective antagonist MRS2179 and protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) whereas enhanced by PKC inhibitors GF109203X and Go6979. Inhibition of capacitative Ca(2+) entry (CCE) decreased the Ca(2+)-induced Ca(2+) entry; nevertheless, ATP further enhanced the Ca(2+)-induced Ca(2+) entry in the intracellular Ca(2+) store-emptied and CCE-inhibited cells indicating that ATP stimulated Ca(2+) entry via CCE and ionotropic P2X receptors. Furthermore, the 2MeSADP-induced Ca(2+) sustain was eliminated by apyrase but potentiated by P2X(4) allosteric effector ivermectin (IVM). The agonist ADPbetaS stimulated a lesser P2Y(1)-mediated Ca(2+) signal and caused a two-fold increase in ATP release but that were not affected by IVM whereas inhibited by PMA, PLC inhibitor ET-18-OCH(3) and phospholipase D (PLD) inhibitor D609, and enhanced by removal of intra- or extracellular Ca(2+). Taken together, the P2Y(1)-mediated Ca(2+) sustain was at least in part via P2X receptors activated by the P2Y(1)-induced ATP release, and PKC played a pivotal role in desensitization of P2Y(1) receptors in RBA-2 astrocytes.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio , Receptores Purinérgicos P2/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Proteína Quinase C , Ratos , Receptores Purinérgicos P2X , Receptores Purinérgicos P2Y1
8.
Cell Signal ; 17(11): 1384-96, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15985361

RESUMO

The role of protein kinase C (PKC) on regulation of P2X(7) receptor-mediated Ca(2+) signalling was examined on RBA-2 astrocytes. Activation of PKC decreased the receptor-mediated Ca(2+) signalling and the decrease was restored by PKC inhibitors. Down regulation of PKC also caused a decrease in the Ca(2+) signalling. Thus PKC might play a dual role on the P2X(7) receptor signalling. Successive stimulation of the P2X(7) receptor induced a gradual decline of Ca(2+) signalling but PKC inhibitors failed to restore the decline. Nevertheless, PMA stimulated translocation of PKC-alpha, -betaI, -betaII, and -gamma, but only anti-PKC-gamma co-immunoprecipitated the receptors. To examine the role of PKC-gamma, Ca(2+) signalling was measured by Ca(2+) imaging. Our results revealed that the agonist-stimulated Ca(2+) signalling were reduced in the cells that the transfection of either P2X(7) receptor or PKC-gamma morpholino antisense oligo was identified. Thus, we concluded that PKC-gamma interacted with P2X(7) receptor complex and positively regulated the receptor-mediated Ca(2+) signalling.


Assuntos
Astrócitos/fisiologia , Proteína Quinase C/fisiologia , Receptores Purinérgicos P2/fisiologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Astrócitos/citologia , Sinalização do Cálcio , Linhagem Celular , Regulação para Baixo , Ativação Enzimática , Isoenzimas/fisiologia , Oligonucleotídeos Antissenso/farmacologia , Proteína Quinase C/antagonistas & inibidores , Ratos , Receptores Purinérgicos P2X7 , Acetato de Tetradecanoilforbol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...