Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(14): 18164-18172, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38556998

RESUMO

The interface between the electrochromic (EC) electrode and ionic conductor is crucial for high-performance and extraordinarily stable EC devices (ECDs). Herein, the effect of the ALD-AZO interfacial layer on the performance of the WO3 thin film was examined, revealing that an introduction of the ALD-AZO interfacial layer to the Al3+-based complementary ECDs can lead to improved EC performance and stability, such as an extraordinary cyclability of more than 20,000 cycles, an outstanding coloration efficiency of 109.69 cm2 C-1, and a maximum transmittance modulation of 63.44%@633 nm. The probable explanation is that the introduced ALD-AZO interfacial layer can effectively regulate the band gap of WO3, promote the electron transport process, and induce the formation of a robust solid electrolyte interphase to protect the electrode during cycling. These findings offer valuable insights for enhancing the EC performance of the EC thin films and new space for the construction of advanced multivalent Al3+-based ECDs.

2.
Sensors (Basel) ; 24(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38474888

RESUMO

As one of the most important human health indicators, respiratory status is an important basis for the diagnosis of many diseases. However, the high cost of respiratory monitoring makes its use uncommon. This study introduces a low-cost, wearable, flexible humidity sensor for respiratory monitoring. Solution-processed chitosan (CS) placed on a polyethylene terephthalate substrate was used as the sensing layer. An Arduino circuit board was used to read humidity-sensitive voltage changes. The CS-based sensor demonstrated capacitive humidity sensitivity, whereby the capacitance instantly increased from 10-2 to 30 nF when the environmental humidity changed from 43% to 97%. The capacitance logarithm sensitivity and response voltage change was 35.9 pF/%RH and 0.8 V in the RH range from 56% to 97%. And the voltage variation between inhalation and exhalation was ~0.5 V during normal breathing. A rapid response time of ~0.7 s and a recovery time of ~2 s were achieved during respiration testing. Breathing modes (i.e., normal breathing, rest breathing, deep breathing, and fast breathing) and tonal changes during speech could be clearly distinguished. Therefore, such sensors provide a means for economical and convenient wearable respiratory monitoring, and they have the potential to be used for daily health examinations and professional medical diagnoses.


Assuntos
Quitosana , Humanos , Umidade , Monitorização Fisiológica , Respiração , Expiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA