Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 108(5-2): 055202, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38115536

RESUMO

The copropagation of two relativistic intense laser beams with orthogonal polarization in a parabolic plasma channel is studied analytically and numerically. A set of coupled equations for the evolution of the laser spot sizes and transverse centroids are derived by use of the variational approach. It is shown that the centroids of the two beams can spiral and oscillate around each other along the channel axis, where the characteristic frequency is determined both by the laser and plasma parameters. The results are verified by direct numerical solution of the relativistic nonlinear Schrödinger equations for the laser envelopes as well as three-dimensional particle-in-cell simulations. In the case with two ultrashort laser pulses when laser wakefields are excited, it is shown that the two wake bubbles driven by the laser pulses can spiral and oscillate around each other in a way similar to the two pulses. This can be well controlled by adjusting the incidence angle and separation distance between the two laser pulses. Preliminary studies show that externally injected electron beams can follow the trajectories of the oscillating bubbles. Our studies suggest a new way to control the coupling of two intense lasers in plasma for various applications, such as electron acceleration and radiation generation.

2.
Opt Express ; 28(20): 29927-29936, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33114881

RESUMO

Tunable X-ray sources from a laser-driven wakefield have wide applications. However, due to the difficulty of electron dynamics control, currently the tunability of laser wakefield-based X-ray sources is still difficult. By using three-dimensional particle-in-cell simulations, we propose a scheme to realize controllable electron dynamics and X-ray radiation. In the scheme, a long wavelength drive pulse excites a plasma wake and an off-axis laser pulse with a short wavelength co-propagates with the drive pulse and ionizes the K-shell electrons of the background high-Z gas. The electrons can be injected in the wakefield with controllable transverse positions and residual momenta. These injected electrons experience controllable oscillations in the wake, leading to tunable radiations both in intensity and polarization.

3.
Opt Express ; 28(11): 15794-15804, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32549416

RESUMO

A type of plasma-based optical modulator is proposed for the generation of broadband high-power laser pulses. Compared with normal optical components, plasma-based optical components can sustain much higher laser intensities. Here we illustrate via theory and simulation that a high-power sub-relativistic laser pulse can be self-modulated to a broad bandwidth over 100% after it passes through a tenuous plasma. In this scheme, the self-modulation of the incident picoseconds sub-relativistic pulse is realized via stimulated Raman forward rescattering in the quasi-linear regime, where the stimulated Raman backscattering is heavily dampened. The optimal laser and plasma parameters for this self-modulation have been identified. For a laser with asub-relativistic intensity of I ∼ 1017W/cm2, the time scale for the development of self-modulation is around 103 light periods when stimulated Raman forward scattering has been fully developed. Consequently, the spatial scale required for such a self-modulation is in the order of millimeters. For a tenuous plasma, the energy conversion efficiency of this self-modulation is around 90%. Theoretical predictions are verified by both one-dimensional and two-dimensional particle-in-cell simulations.

4.
Sci Adv ; 6(22): eaaz7240, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32523994

RESUMO

Recent developments in laser-wakefield accelerators have led to compact ultrashort X/γ-ray sources that can deliver peak brilliance comparable with conventional synchrotron sources. Such sources normally have low efficiencies and are limited to 107-8 photons/shot in the keV to MeV range. We present a novel scheme to efficiently produce collimated ultrabright γ-ray beams with photon energies tunable up to GeV by focusing a multi-petawatt laser pulse into a two-stage wakefield accelerator. This high-intensity laser enables efficient generation of a multi-GeV electron beam with a high density and tens-nC charge in the first stage. Subsequently, both the laser and electron beams enter into a higher-density plasma region in the second stage. Numerical simulations demonstrate that more than 1012 γ-ray photons/shot are produced with energy conversion efficiency above 10% for photons above 1 MeV, and the peak brilliance is above 1026 photons s-1 mm-2 mrad-2 per 0.1% bandwidth at 1 MeV. This offers new opportunities for both fundamental and applied research.

5.
Light Sci Appl ; 9: 46, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32218917

RESUMO

Ultrashort intense optical pulses in the mid-infrared (mid-IR) region are very important for broad applications ranging from super-resolution spectroscopy to attosecond X-ray pulse generation and particle acceleration. However, currently, it is still difficult to produce few-cycle mid-IR pulses of relativistic intensities using standard optical techniques. Here, we propose and numerically demonstrate a novel scheme to produce these mid-IR pulses based on laser-driven plasma optical modulation. In this scheme, a plasma wake is first excited by an intense drive laser pulse in an underdense plasma, and a signal laser pulse initially at the same wavelength (1 micron) as that of the drive laser is subsequently injected into the plasma wake. The signal pulse is converted to a relativistic multi-millijoule near-single-cycle mid-IR pulse with a central wavelength of ~5 microns via frequency-downshifting, where the energy conversion efficiency is as high as approximately 30% when the drive and signal laser pulses are both at a few tens of millijoules at the beginning. Our scheme can be realized with terawatt-class kHz laser systems, which may bring new opportunities in high-field physics and ultrafast science.

6.
Opt Express ; 27(16): 23529-23538, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510628

RESUMO

The interaction between laser light and an underdense plasma immersed in a spatio-temporally tunable magnetic field is studied analytically and numerically. The transversely nonuniform magnetic field can serve as a magnetic channel, which can act on laser propagation in a similar way to the density channel. The envelope equation for laser intensity evolution is derived, which contains the effects of magnetic channel and relativistic self-focusing. Due to the magnetic field applied, the critical laser power for relativistic self-focusing can be significantly reduced. Theory and particle-in-cell simulations show that a weakly relativistic laser pulse can propagate with a nearly constant peak intensity along the magnetic channel for a distance much longer than its Rayleigh length. By setting the magnetic field tunable in both space and time, the simulation further shows that the magnetized plasma can then act as a lens of varying focal length to control the movement of laser focal spot, decoupling the laser group velocity from the light speed c in vacuum.

7.
Opt Express ; 27(14): 19319-19330, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31503693

RESUMO

With increasing laser peak power, the generation and manipulation of high-power laser pulses become a growing challenge for conventional solid-state optics due to their limited damage threshold. As a result, plasma-based optical components that can sustain extremely high fields are attracting increasing interest. Here, we propose a type of plasma waveplate based on magneto-optical birefringence under a transverse magnetic field, which can work under extremely high laser power. Importantly, this waveplate can simultaneously alter the polarization state and boost the peak laser power. It is demonstrated numerically that an initially linearly polarized laser pulse with 5 petawatt peak power can be converted into a circularly polarized pulse with a peak power higher than 10 petawatts by such a waveplate with a centimeter-scale diameter. The energy conversion efficiency of the polarization transformation is about 98%. The necessary waveplate thickness is shown to scale inversely with plasma electron density ne and the square of magnetic field B0, and it is about 1 cm for ne = 3 × 1020 cm-3 and B0 = 100 T. The proposed plasma waveplate and other plasma-based optical components can play a critical role for the effective utilization of multi-petawatt laser systems.

8.
Rev Sci Instrum ; 89(9): 093302, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30278712

RESUMO

A multi-channel Thomson parabola spectrometer was designed and employed to diagnose ion beams driven by intense laser pulses. Angular-resolved energy spectra for different ion species can be measured in a single shot. It contains parallel dipole magnets and wedged electrodes to fit ion dispersion of different charge-to-mass ratios. The diameter and separation of the entrance pinhole channels were designed properly to provide sufficient resolution and avoid overlapping of dispersed ion beams. To obtain a precise energy spectral resolving, three-dimensional distributions of the electric and magnetic fields were simulated. Experimental measurement of energy-dependent angular distributions of target normal sheath accelerated protons and deuterons was demonstrated. This novel compact design provides a comprehensive characterization for ion beams.

9.
Opt Express ; 25(20): 23567-23578, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-29041308

RESUMO

Relativistically intense laser solid target interaction has been proved to be a promising way to generate high-order harmonics, which can be used to diagnose ultrafast phenomena. However, their emission direction and spectra still lack tunability. Based upon two-dimensional particle-in-cell simulations, we show that directional enhancement of selected high-order-harmonics can be realized using blazed grating targets. Such targets can select harmonics with frequencies being integer times of the grating frequency. Meanwhile, the radiation intensity and emission area of the harmonics are increased. The emission direction is controlled by tailoring the local blazed structure. Theoretical and electron dynamics analysis for harmonics generation, selection and directional enhancement from the interaction between multi-cycle laser and grating target are carried out. These studies will benefit the generation and application of laser plasma-based high order harmonics.

10.
Sci Rep ; 7: 42915, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28266497

RESUMO

A pair of collisionless shocks that propagate in the opposite directions are firstly observed in the interactions of laser-produced counter-streaming flows. The flows are generated by irradiating a pair of opposing copper foils with eight laser beams at the Shenguang-II (SG-II) laser facility. The experimental results indicate that the excited shocks are collisionless and electrostatic, in good agreement with the theoretical model of electrostatic shock. The particle-in-cell (PIC) simulations verify that a strong electrostatic field growing from the interaction region contributes to the shocks formation. The evolution is driven by the thermal pressure gradient between the upstream and the downstream. Theoretical analysis indicates that the strength of the shocks is enhanced with the decreasing density ratio during both flows interpenetration. The positive feedback can offset the shock decay process. This is probable the main reason why the electrostatic shocks can keep stable for a longer time in our experiment.

11.
Nat Commun ; 7: 11893, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27283369

RESUMO

Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 10(16) W cm(-2) to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(5 Pt 2): 056406, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20365082

RESUMO

Inverse bremsstrahlung (IB) absorption and evolution of the electron distribution function (EDF) in a wide laser intensity range (10;{12}-10;{17} W/cm;{2}) have been studied systematically by a two velocity-dimension Fokker-Planck code. It is found that Langdon's IB operator overestimates the absorption rate at high laser intensity, consequently with an overdistorted non-Maxwellian EDF. According to the small anisotropy of EDF in the oscillation frame, we introduce an IB operator which is similar to Langdon's but without the low laser intensity limit. This operator is appropriate for self-consistently tackling the nonlinear effects of high laser intensity as well as non-Maxwellian EDF. Particularly, our operator is capable of treating IB absorption properly in the indirect and direct-drive inertial confinement fusion schemes with the National Ignition Facility and Laser MegaJoule laser parameters at focused laser intensity beyond 10;{15} W/cm;{2} .

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(3 Pt 2): 035402, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17930299

RESUMO

The acceleration of ions in collisionless electrostatic shocks and solitary waves, driven by ultrashort intense laser pulses in a thin solid target under different conditions, is investigated theoretically. When a shock is formed, ions with certain initial velocities inside the target can be accelerated by the electrostatic field at the shock front to twice the shock speed. When a solitary wave is formed, only ions located at the rear surface of the target can be accelerated by the solitary wave together with the sheath field formed there.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...