Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(9): e0290713, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37703249

RESUMO

Central Park is an iconic feature of New York City, which was the first and one of the hardest hit cities in the United States by the Coronavirus. State-level stay-at-home order, raising COVID-19 cases, as well as the public's personal concerns regarding exposure to the virus, led to a significant reduction of Central Park visitation. We utilized extensive cellphone tracking data to conduct one of the pioneering empirical studies assessing the economic impact of COVID-19 on urban parks. We integrated the difference-in-difference (DID) design with the recreation-demand model. The DID design aids in identifying the causal impacts, controlling for unobservable factors that might confound the treatment effects of interest. Concurrently, the recreational demand model examines the driving factors of visitation changes and enables us to estimate the welfare changes experienced by New York City's residents. Our findings shine a light on the substantial, yet often overlooked, welfare loss triggered by the pandemic. The analysis indicates that the pandemic resulted in a 94% reduction in visitation, corresponding to an annual consumer surplus loss of $450 million. We noted a rebound in visitation following the initial outbreak, influenced by shifts in government policy, weather conditions, holiday periods, and personal characteristics.


Assuntos
COVID-19 , Telefone Celular , Humanos , Cidade de Nova Iorque/epidemiologia , COVID-19/epidemiologia , Cidades/epidemiologia , Surtos de Doenças
2.
Ambio ; 48(10): 1169-1182, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30569439

RESUMO

Integrated modeling is a critical tool to evaluate the behavior of coupled human-freshwater systems. However, models that do not consider both fast and slow processes may not accurately reflect the feedbacks that define complex systems. We evaluated current coupled human-freshwater system modeling approaches in the literature with a focus on categorizing feedback loops as including economic and/or socio-cultural processes and identifying the simulation of fast and slow processes in human and biophysical systems. Fast human and fast biophysical processes are well represented in the literature, but very few studies incorporate slow human and slow biophysical system processes. Challenges in simulating coupled human-freshwater systems can be overcome by quantifying various monetary and non-monetary ecosystem values and by using data aggregation techniques. Studies that incorporate both fast and slow processes have the potential to improve complex system understanding and inform more sustainable decision-making that targets effective leverage points for system change.


Assuntos
Ecossistema , Água Doce , Conservação dos Recursos Naturais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...