Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 626, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245526

RESUMO

Optoelectronic properties of semiconductors are significantly modified by impurities at trace level. Oxygen, a prevalent impurity in organic semiconductors (OSCs), has long been considered charge-carrier traps, leading to mobility degradation and stability problems. However, this understanding relies on the conventional deoxygenation methods, by which oxygen residues in OSCs are inevitable. It implies that the current understanding is questionable. Here, we develop a non-destructive deoxygenation method (i.e., de-doping) for OSCs by a soft plasma treatment, and thus reveal that trace oxygen significantly pre-empties the donor-like traps in OSCs, which is the origin of p-type characteristics exhibited by the majority of these materials. This insight is completely opposite to the previously reported carrier trapping and can clarify some previously unexplained organic electronics phenomena. Furthermore, the de-doping results in the disappearance of p-type behaviors and significant increase of n-type properties, while re-doping (under light irradiation in O2) can controllably reverse the process. Benefiting from this, the key electronic characteristics (e.g., polarity, conductivity, threshold voltage, and mobility) can be precisely modulated in a nondestructive way, expanding the explorable property space for all known OSC materials.

2.
iScience ; 26(9): 107676, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37680490

RESUMO

With the exponential expansion of electric vehicles (EVs), the disposal of Li-ion batteries (LIBs) is poised to increase significantly in the coming years. Effective recycling of these batteries is essential to address environmental concerns and tap into their economic value. Direct recycling has recently emerged as a promising solution at the laboratory level, offering significant environmental benefits and economic viability compared to pyrometallurgical and hydrometallurgical recycling methods. However, its commercialization has not been realized in the terms of financial feasibility. This perspective provides a comprehensive analysis of the obstacles that impede the practical implementation of direct recycling, ranging from disassembling, sorting, and separation to technological limitations. Furthermore, potential solutions are suggested to tackle these challenges in the short term. The need for long-term, collaborative endeavors among manufacturers, battery producers, and recycling companies is outlined to advance fully automated recycling of spent LIBs. Lastly, a smart direct recycling framework is proposed to achieve the full life cycle sustainability of LIBs.

3.
Chem Asian J ; 18(18): e202300557, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37553862

RESUMO

Hydrothermal-based direct regeneration of spent Li-ion battery (LIB) cathodes has garnered tremendous attention for its simplicity and scalability. However, it is heavily reliant on manual disassembly to ensure the high purity of degraded cathode powders, and the quality of regenerated materials. In reality, degraded cathodes often contain residual components of the battery, such as binders, current collectors, and graphite particles. Thorough investigation is thus required to understand the effects of these impurities on hydrothermal-based direct regeneration. In this study, we focus on isolating the effects of aluminum (Al) scraps on the direct regeneration process. We found that Al metal can be dissolved during the hydrothermal relithiation process. Even when the cathode material contains up to 15 wt.% Al scraps, no detrimental effects were observed on the recovered structure, chemical composition, and electrochemical performance of the regenerated cathode material. The regenerated NCM cathode can achieve a capacity of 163.68 mAh/g at 0.1 C and exhibited a high-capacity retention of 85.58 % after cycling for 200 cycles at 0.5 C. Therefore, the hydrothermal-based regeneration method is effective in revitalizing degraded cathode materials, even in the presence of notable Al impurity content, showing great potential for industrial applications.

4.
J Am Chem Soc ; 144(9): 4260-4268, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35192361

RESUMO

Direct propylene epoxidation with molecular oxygen is a dream reaction with 100% atom economy, but aerobic epoxidation is challenging because of the undesired over-oxidation and isomerization of epoxide products. Herein, we report the construction of uniform cobalt ions confined in faujasite zeolite, namely, Co@Y, which exhibits unprecedented catalytic performance in the aerobic epoxidation of propylene. Propylene conversion of 24.6% is achieved at propylene oxide selectivity of 57% at 773 K, giving a state-of-the-art propylene oxide production rate of 4.7 mmol/gcat/h. The catalytic performance of Co@Y is very stable, and no activity loss can be observed for over 200 h. Spectroscopic analyses reveal the details of molecular oxygen activation on isolated cobalt ions, followed by interaction with propylene to produce epoxide, in which the Co2+-Coδ+-Co2+ (2 < δ < 3) redox cycle is involved. The reaction pathway of propylene oxide and byproduct acrolein formation from propylene epoxidation is investigated by density functional theory calculations, and the unique catalytic performance of Co@Y is interpreted. This work presents an explicit example of constructing specific transition-metal ions within the zeolite matrix toward selective catalytic oxidations.

5.
Adv Mater ; 34(2): e2105541, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34613619

RESUMO

Lithium-sulfur (Li-S) batteries are considered as one of the most promising next-generation rechargeable batteries owing to their high energy density and cost-effectiveness. However, the sluggish kinetics of the sulfur reduction reaction process, which is so far insufficiently explored, still impedes its practical application. Metal-organic frameworks (MOFs) are widely investigated as a sulfur immobilizer, but the interactions and catalytic activity of lithium polysulfides (LiPs) on metal nodes are weak due to the presence of organic ligands. Herein, a strategy to design quasi-MOF nanospheres, which contain a transition-state structure between the MOF and the metal oxide via controlled ligand exchange strategy, to serve as sulfur electrocatalyst, is presented. The quasi-MOF not only inherits the porous structure of the MOF, but also exposes abundant metal nodes to act as active sites, rendering strong LiPs absorbability. The reversible deligandation/ligandation of the quasi-MOF and its impact on the durability of the catalyst over the course of the electrochemical process is acknowledged, which confers a remarkable catalytic activity. Attributed to these structural advantages, the quasi-MOF delivers a decent discharge capacity and low capacity-fading rate over long-term cycling. This work not only offers insight into the rational design of quasi-MOF-based composites but also provides guidance for application in Li-S batteries.

6.
Chem Commun (Camb) ; 55(70): 10420-10423, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31407748

RESUMO

Herein, we have shown that the [Ca-O-P] sites exposed on hydroxyapatite are clearly responsible for C-C formation in ethanol direct-coupling, and their high density accelerates the C-C coupling rate and boosts C6-12 alcohol production. Notably, nanowire-like hydroxyapatite exhibited 30.4% selectivity to n-butanol and 63.9% selectivity to C6-12OH at a conversion of 45.7% at 325 °C, and thereby close to 30% yield of C6-12OH, which is greatly higher than that using the state-of-the-art catalysts (6%).

7.
J Am Chem Soc ; 139(48): 17608-17616, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29131603

RESUMO

Ceria (CeO2) has recently been found to be a promising catalyst in the selective hydrogenation of alkynes to alkenes. This reaction occurs primarily on highly dispersed metal catalysts, but rarely on oxide surfaces. The origin of the outstanding activity and selectivity observed on CeO2 remains unclear. In this work, we show that one key aspect of the hydrogenation reaction-the interaction of hydrogen with the oxide-depends strongly on the presence of O vacancies within CeO2. Through infrared reflection absorption spectroscopy on well-ordered CeO2(111) thin films and density functional theory (DFT) calculations, we show that the preferred heterolytic dissociation of molecular hydrogen on CeO2(111) requires H2 pressures in the mbar regime. Hydrogen depth profiling with nuclear reaction analysis indicates that H species stay on the surface of stoichiometric CeO2(111) films, whereas H incorporates as a volatile species into the volume of partially reduced CeO2-x(111) thin films (x ∼ 1.8-1.9). Complementary DFT calculations demonstrate that oxygen vacancies facilitate H incorporation below the surface and that they are the key to the stabilization of hydridic H species in the volume of reduced ceria.

8.
Phys Chem Chem Phys ; 19(6): 4231-4242, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28116388

RESUMO

Room temperature adsorption of carbon dioxide (CO2) on monocrystalline CaO(001) thin films grown on a Mo(001) substrate was studied by infrared reflection-absorption spectroscopy (IRAS) and quantum chemical calculations. For comparison, CO2 adsorption was examined on poorly ordered, nanoparticulate CaO films prepared on Ru(0001). For both systems, CO2 readily adsorbs on the clean CaO surface. However, additional bands were observable on the CaO/Ru(0001) films compared with CaO/Mo(001), because the stricter IRAS surface selection rules do not apply to adsorption on the disordered thin films grown on Ru(0001). Spectral evolution with increasing exposure of the IRA bands suggested the presence of several adsorption sites which are consecutively populated by CO2. Density functional calculations showed that CO2 adsorption occurs as monodentate surface carbonate (CO32-) species at monatomic step sites and other low-coordinated sites, followed by formation of carbonates on terraces, which dominate at increasing CO2 exposure. To explain the coverage-dependent IRAS results, we propose CO2 surface islanding from the onset, most likely in the form of pairs and other chain-like species, which were calculated as thermodynamically favorable. The calculated adsorption energy for isolated CO2 on the terrace sites (184 ± 10 kJ mol-1) is larger than the adsorption energy obtained by temperature programmed desorption (∼120-140 kJ mol-1) and heat of adsorption taken from microcalorimetry measurements at low coverage (∼125 kJ mol-1). However, the calculated adsorption energies become less favorable when carbonate chains intersect on CaO terraces, forming kinks. Furthermore, our assignments of the initial stages of CO2 adsorption are consistent with the observed coverage effect on the CO2 adsorption energy measured by microcalorimetry and the IRAS results.

9.
Nano Lett ; 15(5): 3616-23, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25897635

RESUMO

In heterogeneous catalysis molecule-metal interaction is often modulated through structural modifications at the surface or under the surface of the metal catalyst. Here, we suggest an alternative way toward this modulation by placing a two-dimensional (2D) cover on the metal surface. As an illustration, CO adsorption on Pt(111) surface has been studied under 2D hexagonal boron nitride (h-BN) overlayer. Dynamic imaging data from surface electron microscopy and in situ surface spectroscopic results under near ambient pressure conditions confirm that CO molecules readily intercalate monolayer h-BN sheets on Pt(111) in CO atmosphere but desorb from the h-BN/Pt(111) interface even around room temperature in ultrahigh vacuum. The interaction of CO with Pt has been strongly weakened due to the confinement effect of the h-BN cover, and consequently, CO oxidation at the h-BN/Pt(111) interface was enhanced thanks to the alleviated CO poisoning effect.

10.
Proc Natl Acad Sci U S A ; 111(48): 17023-8, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25404332

RESUMO

Graphitic overlayers on metals have commonly been considered as inhibitors for surface reactions due to their chemical inertness and physical blockage of surface active sites. In this work, however, we find that surface reactions, for instance, CO adsorption/desorption and CO oxidation, can take place on Pt(111) surface covered by monolayer graphene sheets. Surface science measurements combined with density functional calculations show that the graphene overlayer weakens the strong interaction between CO and Pt and, consequently, facilitates the CO oxidation with lower apparent activation energy. These results suggest that interfaces between graphitic overlayers and metal surfaces act as 2D confined nanoreactors, in which catalytic reactions are promoted. The finding contrasts with the conventional knowledge that graphitic carbon poisons a catalyst surface but opens up an avenue to enhance catalytic performance through coating of metal catalysts with controlled graphitic covers.


Assuntos
Monóxido de Carbono/química , Grafite/química , Nanopartículas Metálicas/química , Metais/química , Adsorção , Dióxido de Carbono/química , Catálise , Cinética , Oxirredução , Oxigênio/química , Tamanho da Partícula , Platina/química , Propriedades de Superfície , Temperatura
11.
Science ; 344(6183): 495-9, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24786074

RESUMO

Hybrid metal nanoparticles can allow separate reaction steps to occur in close proximity at different metal sites and accelerate catalysis. We synthesized iron-nickel hydroxide-platinum (transition metal-OH-Pt) nanoparticles with diameters below 5 nanometers and showed that they are highly efficient for carbon monoxide (CO) oxidation catalysis at room temperature. We characterized the composition and structure of the transition metal-OH-Pt interface and showed that Ni(2+) plays a key role in stabilizing the interface against dehydration. Density functional theory and isotope-labeling experiments revealed that the OH groups at the Fe(3+)-OH-Pt interfaces readily react with CO adsorbed nearby to directly yield carbon dioxide (CO2) and simultaneously produce coordinatively unsaturated Fe sites for O2 activation. The oxide-supported PtFeNi nanocatalyst rapidly and fully removed CO from humid air without decay in activity for 1 month.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...