Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(1): 425-434, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38115766

RESUMO

Directional graphene aerogels (DGAs) are proposed as electrode materials to alleviate ionic and mass transport issues in organic redox flow batteries (ORFBs). DGAs with high pore directionality would provide low resistance channels for effective ionic charge and liquid electrolyte transport in these devices. DGAs' porous and directional characteristics can be controlled by the growth of ice crystals during freeze casting, which is influenced by the self-diffusivity of water, phase change driving forces, water-ice graphene interactions, and convection in the water-graphene media. It is found that mass transport-related properties of DGAs, including pore size and directionality, show a significant dependence on freezing temperature, graphene oxide (GO) loadings, and synthesis vessel diameter-to-height ratio (D/H). For the freezing temperature change from -20 to -115 °C, the average pore size progressively decreased from 120 to 20 µm, and the pore directionality transitioned from lamellar to ill-defined structures. When GO loadings were increased from 2 to 10 mg/mL at a fixed freezing temperature, pore size reduction was observed with less defined directionality. Furthermore, the pore directionality diminished with an increased width-to-height aspect ratio of DGA samples due to the buoyancy-driven convective circulation, which interfered with the directional ice/pore growth. Understanding the comprehensive effects of these mechanisms enables the controlled growth of ice crystals, leading to graphene aerogels with highly directional microstructures.

2.
Foods ; 9(10)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076525

RESUMO

The dielectric properties of food materials is used to describe the interaction of foods with electromagnetic energy for food technology and engineering. To quantify the relationship between dielectric properties and influencing factors, regression analysis is used in our study. Many linear or polynomial regression equations are proposed. However, the basic assumption of the regression analysis is that data with a normal distribution and constant variance are not checked. This study uses sixteen datasets from the literature to derive the equations for dielectric properties. The dependent variables are the dielectric constant and the loss factor. The independent variables are the frequency, temperature, and moisture content. The dependent variables and frequency terms are transformed for regression analysis. The effect of other qualitative factors, such as treatment method and the position of subjects on dielectric properties, are determined using categorical testing. Then, the regression equations can be used to determine which influencing factors are important and which are not. The method can be used for other datasets of dielectric properties to classify influencing factors, including quantitative and qualitative variables.

3.
Sensors (Basel) ; 10(11): 10081-94, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22163458

RESUMO

The measurement of the leaf temperature of forests or agricultural plants is an important technique for the monitoring of the physiological state of crops. The infrared thermometer is a convenient device due to its fast response and nondestructive measurement technique. Nowadays, a novel infrared thermocouple, developed with the same measurement principle of the infrared thermometer but using a different detector, has been commercialized for non-contact temperature measurement. The performances of two-kinds of infrared thermocouples were evaluated in this study. The standard temperature was maintained by a temperature calibrator and a special black cavity device. The results indicated that both types of infrared thermocouples had good precision. The error distribution ranged from -1.8 °C to 18 °C as the reading values served as the true values. Within the range from 13 °C to 37 °C, the adequate calibration equations were the high-order polynomial equations. Within the narrower range from 20 °C to 35 °C, the adequate equation was a linear equation for one sensor and a two-order polynomial equation for the other sensor. The accuracy of the two kinds of infrared thermocouple was improved by nearly 0.4 °C with the calibration equations. These devices could serve as mobile monitoring tools for in situ and real time routine estimation of leaf temperatures.


Assuntos
Técnicas Biossensoriais/métodos , Termômetros , Calibragem , Folhas de Planta/química , Folhas de Planta/fisiologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA