Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 1157, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39284869

RESUMO

Neuroligin-2 (Nlgn2) is a key synaptic adhesion protein at virtually all GABAergic synapses, which recruits GABAARs by promoting assembly of the postsynaptic gephyrin scaffold. Intriguingly, loss of Nlgn2 differentially affects subsets of GABAergic synapses, indicating that synapse-specific interactors and redundancies define its function, but the nature of these interactions remain poorly understood. Here we investigated how Nlgn2 function in hippocampal area CA1 is modulated by two proposed interaction partners, MDGA1 and MDGA2. We show that loss of MDGA1 expression, but not heterozygous deletion of MDGA2, ameliorates the abnormal cytosolic gephyrin aggregation, the reduction in inhibitory synaptic transmission and the exacerbated anxiety-related behaviour characterizing Nlgn2 knockout (KO) mice. Additionally, combined Nlgn2 and MDGA1 deletion causes an exacerbated layer-specific loss of gephyrin puncta. Given that both Nlgn2 and the MDGA1 have been correlated with many psychiatric disorders, our data support the notion that cytosolic gephyrin aggregation may represent an interesting target for novel therapeutic strategies.


Assuntos
Proteínas de Transporte , Moléculas de Adesão Celular Neuronais , Proteínas de Membrana , Camundongos Knockout , Receptores de GABA-A , Sinapses , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Sinapses/metabolismo , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Citosol/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Transmissão Sináptica , Camundongos Endogâmicos C57BL , Região CA1 Hipocampal/metabolismo
2.
FASEB J ; 35(6): e21585, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33960026

RESUMO

While the neural circuits mediating normal, adaptive defensive behaviors have been extensively studied, substantially less is currently known about the network mechanisms by which aberrant, pathological anxiety is encoded in the brain. Here we investigate in mice how deletion of Neuroligin-2 (Nlgn2), an inhibitory synapse-specific adhesion protein that has been associated with pathological anxiety and other psychiatric disorders, alters the communication between key brain regions involved in mediating defensive behaviors. To this end, we performed multi-site simultaneous local field potential (LFP) recordings from the basolateral amygdala (BLA), centromedial amygdala (CeM), bed nucleus of the stria terminalis (BNST), prefrontal cortex (mPFC) and ventral hippocampus (vHPC) in an open field paradigm. We found that LFP power in the vHPC was profoundly increased and was accompanied by an abnormal modulation of the synchrony of theta frequency oscillations particularly in the vHPC-mPFC-BLA circuit. Moreover, deletion of Nlgn2 increased beta and gamma frequency synchrony across the network, and this increase was associated with increased center avoidance. Local deletion of Nlgn2 in the vHPC and BLA revealed that they encode distinct aspects of this avoidance phenotype, with vHPC linked to immobility and BLA linked to a reduction in exploratory activity. Together, our data demonstrate that alterations in long-range functional connectivity link synaptic inhibition to abnormal defensive behaviors, and that both exaggerated activation of normal defensive circuits and recruitment of fundamentally distinct mechanisms contribute to this phenotype. Nlgn2 knockout mice therefore represent a highly relevant model to study the role of inhibitory synaptic transmission in the circuits underlying anxiety disorders.


Assuntos
Transtornos de Ansiedade/patologia , Comportamento Animal , Ritmo beta , Moléculas de Adesão Celular Neuronais/fisiologia , Modelos Animais de Doenças , Proteínas do Tecido Nervoso/fisiologia , Ritmo Teta , Animais , Transtornos de Ansiedade/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Nat Commun ; 9(1): 5400, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30573727

RESUMO

Abnormalities in synaptic inhibition play a critical role in psychiatric disorders, and accordingly, it is essential to understand the molecular mechanisms linking components of the inhibitory postsynapse to psychiatrically relevant neural circuits and behaviors. Here we study the role of IgSF9b, an adhesion protein that has been associated with affective disorders, in the amygdala anxiety circuitry. We show that deletion of IgSF9b normalizes anxiety-related behaviors and neural processing in mice lacking the synapse organizer Neuroligin-2 (Nlgn2), which was proposed to complex with IgSF9b. This normalization occurs through differential effects of Nlgn2 and IgSF9b at inhibitory synapses in the basal and centromedial amygdala (CeM), respectively. Moreover, deletion of IgSF9b in the CeM of adult Nlgn2 knockout mice has a prominent anxiolytic effect. Our data place IgSF9b as a key regulator of inhibition in the amygdala and indicate that IgSF9b-expressing synapses in the CeM may represent a target for anxiolytic therapies.


Assuntos
Tonsila do Cerebelo/metabolismo , Transtornos de Ansiedade/genética , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Sinapses/metabolismo , Tonsila do Cerebelo/fisiologia , Animais , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/fisiologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Interferência de RNA , Transmissão Sináptica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA