Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 12(2): 542-561, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34551968

RESUMO

The degree of metastatic disease varies widely among patients with cancer and affects clinical outcomes. However, the biological and functional differences that drive the extent of metastasis are poorly understood. We analyzed primary tumors and paired metastases using a multifluorescent lineage-labeled mouse model of pancreatic ductal adenocarcinoma (PDAC)-a tumor type in which most patients present with metastases. Genomic and transcriptomic analysis revealed an association between metastatic burden and gene amplification or transcriptional upregulation of MYC and its downstream targets. Functional experiments showed that MYC promotes metastasis by recruiting tumor-associated macrophages, leading to greater bloodstream intravasation. Consistent with these findings, metastatic progression in human PDAC was associated with activation of MYC signaling pathways and enrichment for MYC amplifications specifically in metastatic patients. Collectively, these results implicate MYC activity as a major determinant of metastatic burden in advanced PDAC. SIGNIFICANCE: Here, we investigate metastatic variation seen clinically in patients with PDAC and murine PDAC tumors and identify MYC as a major driver of this heterogeneity.This article is highlighted in the In This Issue feature, p. 275.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Regulação Neoplásica da Expressão Gênica , Genes myc , Metástase Neoplásica , Neoplasias Pancreáticas/genética , Adenocarcinoma/secundário , Animais , Carcinoma Ductal Pancreático/secundário , Modelos Animais de Doenças , Humanos , Camundongos , Neoplasias Pancreáticas/patologia
2.
EMBO Rep ; 22(9): e51872, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34324787

RESUMO

Epithelial plasticity, or epithelial-to-mesenchymal transition (EMT), is a well-recognized form of cellular plasticity, which endows tumor cells with invasive properties and alters their sensitivity to various agents, thus representing a major challenge to cancer therapy. It is increasingly accepted that carcinoma cells exist along a continuum of hybrid epithelial-mesenchymal (E-M) states and that cells exhibiting such partial EMT (P-EMT) states have greater metastatic competence than those characterized by either extreme (E or M). We described recently a P-EMT program operating in vivo by which carcinoma cells lose their epithelial state through post-translational programs. Here, we investigate the underlying mechanisms and report that prolonged calcium signaling induces a P-EMT characterized by the internalization of membrane-associated E-cadherin (ECAD) and other epithelial proteins as well as an increase in cellular migration and invasion. Signaling through Gαq-associated G-protein-coupled receptors (GPCRs) recapitulates these effects, which operate through the downstream activation of calmodulin-Camk2b signaling. These results implicate calcium signaling as a trigger for the acquisition of hybrid/partial epithelial-mesenchymal states in carcinoma cells.


Assuntos
Sinalização do Cálcio , Transição Epitelial-Mesenquimal , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Plasticidade Celular
3.
Cancer Discov ; 11(7): 1774-1791, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33589425

RESUMO

Pancreatic cancer metastasis is a leading cause of cancer-related deaths, yet very little is understood regarding the underlying biology. As a result, targeted therapies to inhibit metastasis are lacking. Here, we report that the parathyroid hormone-related protein (PTHrP encoded by PTHLH) is frequently amplified as part of the KRAS amplicon in patients with pancreatic cancer. PTHrP upregulation drives the growth of both primary and metastatic tumors in mice and is highly enriched in pancreatic ductal adenocarcinoma metastases. Loss of PTHrP-either genetically or pharmacologically-dramatically reduces tumor burden, eliminates metastasis, and enhances overall survival. These effects are mediated in part through a reduction in epithelial-to-mesenchymal transition, which reduces the ability of tumor cells to initiate metastatic cascade. Spp1, which encodes osteopontin, is revealed to be a downstream effector of PTHrP. Our results establish a new paradigm in pancreatic cancer whereby PTHrP is a driver of disease progression and emerges as a novel therapeutic vulnerability. SIGNIFICANCE: Pancreatic cancer often presents with metastases, yet no strategies exist to pharmacologically inhibit this process. Herein, we establish the oncogenic and prometastatic roles of PTHLH, a novel amplified gene in pancreatic ductal adenocarcinoma. We demonstrate that blocking PTHrP activity reduces primary tumor growth, prevents metastasis, and prolongs survival in mice.This article is highlighted in the In This Issue feature, p. 1601.


Assuntos
Neoplasias Pancreáticas/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Metástase Neoplásica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteína Relacionada ao Hormônio Paratireóideo/antagonistas & inibidores , Proteína Relacionada ao Hormônio Paratireóideo/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...