Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2494: 269-289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35467214

RESUMO

The immune status of plants can be evaluated by monitoring the propagation of pathogens. Plants defend themselves against pathogen attack through an intricate network of phytohormone-driven innate immune responses. Of these, salicylic acid (SA)-dependent defense responses can be assessed in planta by monitoring the propagation of biotrophic and hemi-biotrophic pathogens. Here, we describe methods to monitor the propagation of the hemi-biotrophic bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana leaves. We describe protocols to (i) propagate the plants to the appropriate growth stage for infection, (ii) prepare the bacterial inoculum, (iii) inoculate plants using spray and infiltration techniques, and (iv) analyze the resulting in planta bacterial titers. The latter bacterial titers serve as a measure of plant susceptibility and negatively correlate with immunity. Based on the methods used with the A. thaliana-P. syringae model pathosystem, we include complementary methods allowing the analysis of innate immunity in the crop plants Solanum lycopersicum (tomato) in interaction with P. syringae and Hordeum vulgare (barley) in interaction with Xanthomonas translucens.


Assuntos
Arabidopsis , Hordeum , Solanum lycopersicum , Arabidopsis/fisiologia , Imunidade Inata , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologia
2.
Plant Physiol ; 189(3): 1794-1813, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35485198

RESUMO

Plant cell walls constitute physical barriers that restrict access of microbial pathogens to the contents of plant cells. The primary cell wall of multicellular plants predominantly consists of cellulose, hemicellulose, and pectin, and its composition can change upon stress. BETA-XYLOSIDASE4 (BXL4) belongs to a seven-member gene family in Arabidopsis (Arabidopsis thaliana), one of which encodes a protein (BXL1) involved in cell wall remodeling. We assayed the influence of BXL4 on plant immunity and investigated the subcellular localization and enzymatic activity of BXL4, making use of mutant and overexpression lines. BXL4 localized to the apoplast and was induced upon infection with the necrotrophic fungal pathogen Botrytis cinerea in a jasmonoyl isoleucine-dependent manner. The bxl4 mutants showed a reduced resistance to B. cinerea, while resistance was increased in conditional overexpression lines. Ectopic expression of BXL4 in Arabidopsis seed coat epidermal cells rescued a bxl1 mutant phenotype, suggesting that, like BXL1, BXL4 has both xylosidase and arabinosidase activity. We conclude that BXL4 is a xylosidase/arabinosidase that is secreted to the apoplast and its expression is upregulated under pathogen attack, contributing to immunity against B. cinerea, possibly by removal of arabinose and xylose side-chains of polysaccharides in the primary cell wall.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Xilosidases , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Xilosidases/genética , Xilosidases/metabolismo
3.
Front Plant Sci ; 13: 1096800, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36816482

RESUMO

Pectin- and hemicellulose-associated structures of plant cell walls participate in defense responses against pathogens of different parasitic lifestyles. The resulting immune responses incorporate phytohormone signaling components associated with salicylic acid (SA) and jasmonic acid (JA). SA plays a pivotal role in systemic acquired resistance (SAR), a form of induced resistance that - after a local immune stimulus - confers long-lasting, systemic protection against a broad range of biotrophic invaders. ß-D-XYLOSIDASE 4 (BXL4) protein accumulation is enhanced in the apoplast of plants undergoing SAR. Here, two independent Arabidopsis thaliana mutants of BXL4 displayed compromised systemic defenses, while local resistance responses to Pseudomonas syringae remained largely intact. Because both phloem-mediated and airborne systemic signaling were abrogated in the mutants, the data suggest that BXL4 is a central component in SAR signaling mechanisms. Exogenous xylose, a possible product of BXL4 enzymatic activity in plant cell walls, enhanced systemic defenses. However, GC-MS analysis of SAR-activated plants revealed BXL4-associated changes in the accumulation of certain amino acids and soluble sugars, but not xylose. In contrast, the data suggest a possible role of pectin-associated fucose as well as of the polyamine putrescine as regulatory components of SAR. This is the first evidence of a central role of cell wall metabolic changes in systemic immunity. Additionally, the data reveal a so far unrecognized complexity in the regulation of SAR, which might allow the design of (crop) plant protection measures including SAR-associated cell wall components.

4.
J Exp Bot ; 73(2): 615-630, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34849759

RESUMO

Plants activate biochemical responses to combat stress. (Hemi-)biotrophic pathogens are fended off by systemic acquired resistance (SAR), a primed state allowing plants to respond faster and more strongly upon subsequent infection. Here, we show that SAR-like defences in barley (Hordeum vulgare) are propagated between neighbouring plants, which respond with enhanced resistance to the volatile cues from infected senders. The emissions of the sender plants contained 15 volatile organic compounds (VOCs) associated with infection. Two of these, ß-ionone and nonanal, elicited resistance upon plant exposure. Whole-genome transcriptomics analysis confirmed that interplant propagation of defence in barley is established as a form of priming. Although gene expression changes were more pronounced after challenge infection of the receiver plants with Blumeria graminis f. sp. hordei, differential gene expression in response to the volatile cues of the sender plants included an induction of HISTONE DEACETYLASE 2 (HvHDA2) and priming of TETRATRICOPEPTIDE REPEAT-LIKE superfamily protein (HvTPL). Because HvHDA2 and HvTPL transcript accumulation was also enhanced by exposure of barley to ß-ionone and nonanal, our data identify both genes as possible defence/priming markers in barley. Our results suggest that VOCs and plant-plant interactions are relevant for possible crop protection strategies priming defence responses in barley.


Assuntos
Hordeum , Aldeídos , Hordeum/genética , Norisoprenoides , Doenças das Plantas , Proteínas de Plantas/genética , Plantas
5.
Plant Cell Environ ; 44(4): 1151-1164, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33522606

RESUMO

Isoprene and other terpenoids are important biogenic volatile organic compounds in terms of atmospheric chemistry. Isoprene can aid plant performance under abiotic stresses, but the fundamental biological reasons for the high emissions are not completely understood. Here, we provide evidence of a previously unrecognized ecological function for isoprene and for the sesquiterpene, ß-caryophyllene. We show that isoprene and ß-caryophyllene act as core components of plant signalling networks, inducing resistance against microbial pathogens in neighbouring plants. We challenged Arabidopsis thaliana with Pseudomonas syringae, after exposure to pure volatile terpenoids or to volatile emissions of transformed poplar or Arabidopsis plants. The data suggest that isoprene induces a defence response in receiver plants that is similar to that elicited by monoterpenes and depended on salicylic acid (SA) signalling. In contrast, the sesquiterpene, ß-caryophyllene, induced resistance via jasmonic acid (JA)-signalling. The experiments in an open environment show that natural biological emissions are enough to induce resistance in neighbouring Arabidopsis. Our results show that both isoprene and ß-caryophyllene function as allelochemical components in complex plant signalling networks. Knowledge of this system may be used to boost plant immunity against microbial pathogens in various crop management schemes.


Assuntos
Butadienos/farmacologia , Resistência à Doença/efeitos dos fármacos , Hemiterpenos/farmacologia , Doenças das Plantas/imunologia , Sesquiterpenos Policíclicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/imunologia , Arabidopsis/microbiologia , Doenças das Plantas/microbiologia , Pseudomonas syringae , Compostos Orgânicos Voláteis/metabolismo
6.
New Phytol ; 229(3): 1234-1250, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32978988

RESUMO

Systemic immunity triggered by local plant-microbe interactions is studied as systemic acquired resistance (SAR) or induced systemic resistance (ISR) depending on the site of induction and the lifestyle of the inducing microorganism. SAR is induced by pathogens interacting with leaves, whereas ISR is induced by beneficial microbes interacting with roots. Although salicylic acid (SA) is a central component of SAR, additional signals exclusively promote systemic and not local immunity. These signals cooperate in SAR- and possibly also ISR-associated signaling networks that regulate systemic immunity. The non-SA SAR pathway is driven by pipecolic acid or its presumed bioactive derivative N-hydroxy-pipecolic acid. This pathway further regulates inter-plant defense propagation through volatile organic compounds that are emitted by SAR-induced plants and recognized as defense cues by neighboring plants. Both SAR and ISR influence phytohormone crosstalk towards enhanced defense against pathogens, which at the same time affects the composition of the plant microbiome. This potentially leads to further changes in plant defense, plant-microbe, and plant-plant interactions. Therefore, we propose that such inter-organismic interactions could be combined in potentially highly effective plant protection strategies.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Imunidade Vegetal , Ácido Salicílico
8.
Nature ; 583(7815): 271-276, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32612234

RESUMO

Plant hormones coordinate responses to environmental cues with developmental programs1, and are fundamental for stress resilience and agronomic yield2. The core signalling pathways underlying the effects of phytohormones have been elucidated by genetic screens and hypothesis-driven approaches, and extended by interactome studies of select pathways3. However, fundamental questions remain about how information from different pathways is integrated. Genetically, most phenotypes seem to be regulated by several hormones, but transcriptional profiling suggests that hormones trigger largely exclusive transcriptional programs4. We hypothesized that protein-protein interactions have an important role in phytohormone signal integration. Here, we experimentally generated a systems-level map of the Arabidopsis phytohormone signalling network, consisting of more than 2,000 binary protein-protein interactions. In the highly interconnected network, we identify pathway communities and hundreds of previously unknown pathway contacts that represent potential points of crosstalk. Functional validation of candidates in seven hormone pathways reveals new functions for 74% of tested proteins in 84% of candidate interactions, and indicates that a large majority of signalling proteins function pleiotropically in several pathways. Moreover, we identify several hundred largely small-molecule-dependent interactions of hormone receptors. Comparison with previous reports suggests that noncanonical and nontranscription-mediated receptor signalling is more common than hitherto appreciated.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Mapas de Interação de Proteínas , Transdução de Sinais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Reprodutibilidade dos Testes , Transcrição Gênica
9.
Nat Commun ; 10(1): 3813, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444353

RESUMO

Salicylic acid (SA)-mediated innate immune responses are activated in plants perceiving volatile monoterpenes. Here, we show that monoterpene-associated responses are propagated in feed-forward loops involving the systemic acquired resistance (SAR) signaling components pipecolic acid, glycerol-3-phosphate, and LEGUME LECTIN-LIKE PROTEIN1 (LLP1). In this cascade, LLP1 forms a key regulatory unit in both within-plant and between-plant propagation of immunity. The data integrate molecular components of SAR into systemic signaling networks that are separate from conventional, SA-associated innate immune mechanisms. These networks are central to plant-to-plant propagation of immunity, potentially raising SAR to the population level. In this process, monoterpenes act as microbe-inducible plant volatiles, which as part of plant-derived volatile blends have the potential to promote the generation of a wave of innate immune signaling within canopies or plant stands. Hence, plant-to-plant propagation of SAR holds significant potential to fortify future durable crop protection strategies following a single volatile trigger.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Resistência à Doença/imunologia , Doenças das Plantas/imunologia , Lectinas de Plantas/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Retroalimentação Fisiológica , Glicerofosfatos/imunologia , Glicerofosfatos/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Monoterpenos/imunologia , Monoterpenos/metabolismo , Ácidos Pipecólicos/imunologia , Ácidos Pipecólicos/metabolismo , Doenças das Plantas/microbiologia , Lectinas de Plantas/genética , Plantas Geneticamente Modificadas , Pseudomonas syringae/imunologia , Ácido Salicílico/imunologia , Ácido Salicílico/metabolismo , Transdução de Sinais/imunologia , Compostos Orgânicos Voláteis/imunologia
10.
Mol Plant Microbe Interact ; 32(10): 1303-1313, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31194615

RESUMO

Pipecolic acid (Pip) is an essential component of systemic acquired resistance, priming resistance in Arabidopsis thaliana against (hemi)biotrophic pathogens. Here, we studied the potential role of Pip in bacteria-induced systemic immunity in barley. Exudates of barley leaves infected with the systemic immunity-inducing pathogen Pseudomonas syringae pv. japonica induced immune responses in A. thaliana. The same leaf exudates contained elevated Pip levels compared with those of mock-treated barley leaves. Exogenous application of Pip induced resistance in barley against the hemibiotrophic bacterial pathogen Xanthomonas translucens pv. cerealis. Furthermore, both a systemic immunity-inducing infection and exogenous application of Pip enhanced the resistance of barley against the biotrophic powdery mildew pathogen Blumeria graminis f. sp. hordei. In contrast to a systemic immunity-inducing infection, Pip application did not influence lesion formation by a systemically applied inoculum of the necrotrophic fungus Pyrenophora teres. Nitric oxide (NO) levels in barley leaves increased after Pip application. Furthermore, X. translucens pv. cerealis induced the accumulation of superoxide anion radicals and this response was stronger in Pip-pretreated compared with mock-pretreated plants. Thus, the data suggest that Pip induces barley innate immune responses by triggering NO and priming reactive oxygen species accumulation.


Assuntos
Resistência à Doença , Hordeum , Óxido Nítrico , Ácidos Pipecólicos , Arabidopsis/microbiologia , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/fisiologia , Hordeum/metabolismo , Hordeum/microbiologia , Ácidos Pipecólicos/metabolismo , Ácidos Pipecólicos/farmacologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Xanthomonas/fisiologia
11.
Plant Cell ; 29(6): 1440-1459, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28536145

RESUMO

This study investigates the role of volatile organic compounds in systemic acquired resistance (SAR), a salicylic acid (SA)-associated, broad-spectrum immune response in systemic, healthy tissues of locally infected plants. Gas chromatography coupled to mass spectrometry analyses of SAR-related emissions of wild-type and non-SAR-signal-producing mutant plants associated SAR with monoterpene emissions. Headspace exposure of Arabidopsis thaliana to a mixture of the bicyclic monoterpenes α-pinene and ß-pinene induced defense, accumulation of reactive oxygen species, and expression of SA- and SAR-related genes, including the SAR regulatory AZELAIC ACID INDUCED1 (AZI1) gene and three of its paralogs. Pinene-induced resistance was dependent on SA biosynthesis and signaling and on AZI1 Arabidopsis geranylgeranyl reductase1 mutants with reduced monoterpene biosynthesis were SAR-defective but mounted normal local resistance and methyl salicylate-induced defense responses, suggesting that monoterpenes act in parallel with SA The volatile emissions from SAR signal-emitting plants induced defense in neighboring plants, and this was associated with the presence of α-pinene, ß-pinene, and camphene in the emissions of the "sender" plants. Our data suggest that monoterpenes, particularly pinenes, promote SAR, acting through ROS and AZI1, and likely function as infochemicals in plant-to-plant signaling, thus allowing defense signal propagation between neighboring plants.


Assuntos
Arabidopsis/metabolismo , Monoterpenos/farmacologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Monoterpenos Bicíclicos , Compostos Bicíclicos com Pontes/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Imunidade Inata/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/farmacologia , Transdução de Sinais/efeitos dos fármacos
12.
Mol Plant Pathol ; 16(6): 616-22, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25348251

RESUMO

Folates are essential for one-carbon transfer reactions in all organisms and contribute, for example, to de novo DNA synthesis. Here, we detected the folate precursors 7,8-dihydropteroate (DHP) and 4-amino-4-deoxychorismate (ADC) in extracts from Arabidopsis thaliana plants by Fourier transform ion cyclotron resonance-mass spectrometry. The accumulation of DHP, but not ADC, was induced after infection of plants with Pseudomonas syringae delivering the effector protein AvrRpm1. Application of folic acid or the DHP precursor 7,8-dihydroneopterin (DHN) enhanced resistance in Arabidopsis to P. syringae and elevated the transcript accumulation of the salicylic acid (SA) marker gene pathogenesis-related1 in both the treated and systemic untreated leaves. DHN- and folic acid-induced systemic resistance was dependent on SA biosynthesis and signalling. Similar to SA, folic acid application locally enhanced Arabidopsis susceptibility to the necrotrophic fungus Alternaria brassicicola. Together, the data associate the folic acid pathway with innate immunity in Arabidopsis, simultaneously activating local and systemic SA-dependent resistance to P. syringae and suppressing local resistance to A. brassicicola.


Assuntos
Alternaria/patogenicidade , Arabidopsis/imunologia , Ácido Fólico/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/microbiologia
13.
Plant Physiol ; 166(4): 2133-51, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25332505

RESUMO

Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity.


Assuntos
Hordeum/imunologia , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/farmacologia , Imunidade Vegetal , Pseudomonas syringae/fisiologia , Xanthomonas/fisiologia , Ácido Abscísico/farmacologia , Acetatos/farmacologia , Ciclopentanos/farmacologia , Etilenos/farmacologia , Hordeum/efeitos dos fármacos , Hordeum/genética , Oxilipinas/farmacologia , Doenças das Plantas/microbiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/imunologia , Ácido Salicílico/farmacologia , Tiadiazóis/farmacologia
14.
J Exp Bot ; 65(20): 5919-31, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25114016

RESUMO

Systemic acquired resistance (SAR) is a form of inducible disease resistance that depends on salicylic acid and its upstream regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Although local Arabidopsis thaliana defence responses activated by the Pseudomonas syringae effector protein AvrRpm1 are intact in eds1 mutant plants, SAR signal generation is abolished. Here, the SAR-specific phenotype of the eds1 mutant is utilized to identify metabolites that contribute to SAR. To this end, SAR bioassay-assisted fractionation of extracts from the wild type compared with eds1 mutant plants that conditionally express AvrRpm1 was performed. Using high-performance liquid chromatography followed by mass spectrometry, systemic immunity was associated with the accumulation of 60 metabolites, including the putative SAR signal azelaic acid (AzA) and its precursors 9-hydroperoxy octadecadienoic acid (9-HPOD) and 9-oxo nonanoic acid (ONA). Exogenous ONA induced SAR in systemic untreated leaves when applied at a 4-fold lower concentration than AzA. The data suggest that in planta oxidation of ONA to AzA might be partially responsible for this response and provide further evidence that AzA mobilizes Arabidopsis immunity in a concentration-dependent manner. The AzA fragmentation product pimelic acid did not induce SAR. The results link the C9 lipid peroxidation products ONA and AzA with systemic rather than local resistance and suggest that EDS1 directly or indirectly promotes the accumulation of ONA, AzA, or one or more of their common precursors possibly by activating one or more pathways that either result in the release of these compounds from galactolipids or promote lipid peroxidation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Ligação a DNA/genética , Ácidos Dicarboxílicos/metabolismo , Resistência à Doença , Ácidos Graxos/metabolismo , Doenças das Plantas/imunologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Linoleicos/metabolismo , Peróxidos Lipídicos/metabolismo , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Pseudomonas syringae/fisiologia , Ácido Salicílico/metabolismo
15.
Plant Physiol ; 165(2): 791-809, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24755512

RESUMO

Systemic acquired resistance (SAR) is an inducible immune response that depends on ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Here, we show that Arabidopsis (Arabidopsis thaliana) EDS1 is required for both SAR signal generation in primary infected leaves and SAR signal perception in systemic uninfected tissues. In contrast to SAR signal generation, local resistance remains intact in eds1 mutant plants in response to Pseudomonas syringae delivering the effector protein AvrRpm1. We utilized the SAR-specific phenotype of the eds1 mutant to identify new SAR regulatory proteins in plants conditionally expressing AvrRpm1. Comparative proteomic analysis of apoplast-enriched extracts from AvrRpm1-expressing wild-type and eds1 mutant plants led to the identification of 12 APOPLASTIC, EDS1-DEPENDENT (AED) proteins. The genes encoding AED1, a predicted aspartyl protease, and another AED, LEGUME LECTIN-LIKE PROTEIN1 (LLP1), were induced locally and systemically during SAR signaling and locally by salicylic acid (SA) or its functional analog, benzo 1,2,3-thiadiazole-7-carbothioic acid S-methyl ester. Because conditional overaccumulation of AED1-hemagglutinin inhibited SA-induced resistance and SAR but not local resistance, the data suggest that AED1 is part of a homeostatic feedback mechanism regulating systemic immunity. In llp1 mutant plants, SAR was compromised, whereas the local resistance that is normally associated with EDS1 and SA as well as responses to exogenous SA appeared largely unaffected. Together, these data indicate that LLP1 promotes systemic rather than local immunity, possibly in parallel with SA. Our analysis reveals new positive and negative components of SAR and reinforces the notion that SAR represents a distinct phase of plant immunity beyond local resistance.

16.
Environ Pollut ; 158(4): 1043-50, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19850384

RESUMO

In 2006, a controlled infection study was performed in the 'Kranzberger Forst' to address the following questions: (1) Will massive artificial inoculation with Apiognomonia errabunda override the previously observed inhibitory effect of chronic ozone? (2) Can biochemical or molecular markers be detected to account for the action of ozone? To this end six adult beech trees were chosen, three ozone fumigated (2x ozone) and three control trees (ambient = 1x ozone). Spore-sprayed branches of sun and shade crown positions of each of the trees, and uninoculated control branches, were enclosed in 100-L plastic bags for one night to facilitate infection initiation. Samples were taken within a five-week period after inoculation. A. errabunda infestation levels quantified by real-time PCR increased in leaves that were not fumigated with additional ozone. Cell wall components and ACC (ethylene precursor 1-amino cyclopropane-1-carboxylic acid) increased upon ozone fumigation and may in part lead to the repression of fungal infection.


Assuntos
Poluentes Atmosféricos/toxicidade , Ascomicetos/efeitos dos fármacos , Fagus/microbiologia , Ozônio/toxicidade , Folhas de Planta/microbiologia , Fagus/efeitos dos fármacos , Fagus/genética , Expressão Gênica/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...