Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 39(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862243

RESUMO

MOTIVATION: The reconstruction of small key regulatory networks that explain the differences in the development of cell (sub)types from single-cell RNA sequencing is a yet unresolved computational problem. RESULTS: To this end, we have developed SCANet, an all-in-one package for single-cell profiling that covers the whole differential mechanotyping workflow, from inference of trait/cell-type-specific gene co-expression modules, driver gene detection, and transcriptional gene regulatory network reconstruction to mechanistic drug repurposing candidate prediction. To illustrate the power of SCANet, we examined data from two studies. First, we identify the drivers of the mechanotype of a cytokine storm associated with increased mortality in patients with acute respiratory illness. Secondly, we find 20 drugs for eight potential pharmacological targets in cellular driver mechanisms in the intestinal stem cells of obese mice. AVAILABILITY AND IMPLEMENTATION: SCANet is a free, open-source, and user-friendly Python package that can be seamlessly integrated into single-cell-based systems medicine research and mechanistic drug discovery.


Assuntos
Perfilação da Expressão Gênica , Software , Humanos , Animais , Camundongos , Análise de Sequência de RNA , Reposicionamento de Medicamentos , Análise da Expressão Gênica de Célula Única , Análise de Célula Única , Redes Reguladoras de Genes
2.
Cells ; 12(10)2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37408191

RESUMO

Architectural proteins are essential epigenetic regulators that play a critical role in organizing chromatin and controlling gene expression. CTCF (CCCTC-binding factor) is a key architectural protein responsible for maintaining the intricate 3D structure of chromatin. Because of its multivalent properties and plasticity to bind various sequences, CTCF is similar to a Swiss knife for genome organization. Despite the importance of this protein, its mechanisms of action are not fully elucidated. It has been hypothesized that its versatility is achieved through interaction with multiple partners, forming a complex network that regulates chromatin folding within the nucleus. In this review, we delve into CTCF's interactions with other molecules involved in epigenetic processes, particularly histone and DNA demethylases, as well as several long non-coding RNAs (lncRNAs) that are able to recruit CTCF. Our review highlights the importance of CTCF partners to shed light on chromatin regulation and pave the way for future exploration of the mechanisms that enable the finely-tuned role of CTCF as a master regulator of chromatin.


Assuntos
Cromatina , DNA , Fator de Ligação a CCCTC/genética , DNA/metabolismo , Núcleo Celular/metabolismo , Genoma
3.
Methods Inf Med ; 61(S 01): e12-e27, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35062032

RESUMO

BACKGROUND: Artificial intelligence (AI) has been successfully applied in numerous scientific domains. In biomedicine, AI has already shown tremendous potential, e.g., in the interpretation of next-generation sequencing data and in the design of clinical decision support systems. OBJECTIVES: However, training an AI model on sensitive data raises concerns about the privacy of individual participants. For example, summary statistics of a genome-wide association study can be used to determine the presence or absence of an individual in a given dataset. This considerable privacy risk has led to restrictions in accessing genomic and other biomedical data, which is detrimental for collaborative research and impedes scientific progress. Hence, there has been a substantial effort to develop AI methods that can learn from sensitive data while protecting individuals' privacy. METHOD: This paper provides a structured overview of recent advances in privacy-preserving AI techniques in biomedicine. It places the most important state-of-the-art approaches within a unified taxonomy and discusses their strengths, limitations, and open problems. CONCLUSION: As the most promising direction, we suggest combining federated machine learning as a more scalable approach with other additional privacy-preserving techniques. This would allow to merge the advantages to provide privacy guarantees in a distributed way for biomedical applications. Nonetheless, more research is necessary as hybrid approaches pose new challenges such as additional network or computation overhead.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Privacidade , Inteligência Artificial , Estudo de Associação Genômica Ampla , Humanos , Aprendizado de Máquina
4.
Genome Biol ; 23(1): 32, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073941

RESUMO

Meta-analysis has been established as an effective approach to combining summary statistics of several genome-wide association studies (GWAS). However, the accuracy of meta-analysis can be attenuated in the presence of cross-study heterogeneity. We present sPLINK, a hybrid federated and user-friendly tool, which performs privacy-aware GWAS on distributed datasets while preserving the accuracy of the results. sPLINK is robust against heterogeneous distributions of data across cohorts while meta-analysis considerably loses accuracy in such scenarios. sPLINK achieves practical runtime and acceptable network usage for chi-square and linear/logistic regression tests. sPLINK is available at https://exbio.wzw.tum.de/splink .


Assuntos
Estudo de Associação Genômica Ampla , Privacidade , Estudo de Associação Genômica Ampla/métodos , Modelos Lineares , Modelos Logísticos , Metanálise como Assunto
5.
Ann Neurol ; 85(5): 771-776, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30843274

RESUMO

Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is the most common autoimmune encephalitis related to autoantibody-mediated synaptic dysfunction. Cerebrospinal fluid-derived human monoclonal NR1 autoantibodies showed low numbers of somatic hypermutations or were unmutated. These unexpected germline-configured antibodies showed weaker binding to the NMDAR than matured antibodies from the same patient. In primary hippocampal neurons, germline NR1 autoantibodies strongly and specifically reduced total and synaptic NMDAR currents in a dose- and time-dependent manner. The findings suggest that functional NMDAR antibodies are part of the human naïve B cell repertoire. Given their effects on synaptic function, they might contribute to a broad spectrum of neuropsychiatric symptoms. Ann Neurol 2019;85:771-776.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato/sangue , Autoanticorpos/sangue , Receptores de N-Metil-D-Aspartato/sangue , Animais , Encefalite Antirreceptor de N-Metil-D-Aspartato/patologia , Células HEK293 , Hipocampo/química , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Camundongos , Neurônios/química , Neurônios/metabolismo , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Receptores de N-Metil-D-Aspartato/química
6.
J Neurol ; 265(11): 2625-2632, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30187160

RESUMO

Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a common autoimmune encephalitis presenting with psychosis, dyskinesias, autonomic dysfunction and seizures. The underlying autoantibodies against the NR1 subunit are directly pathogenic by disrupting synaptic NMDAR currents. However, antibody titers correlate only partially with the clinical outcome, suggesting the relevance of other factors such as antibody affinity. We thus determined the binding curves of human monoclonal autoantibodies and patients' cerebrospinal fluid (CSF) against NR1-expressing HEK293 cells using flow cytometry. Antibody affinity was highly variable with binding constants (half-maximal concentration, c50) ranging from 1 to 74 µg/ml for monoclonal antibodies. Comparing values of individual monoclonal antibodies with human CSF samples suggested that the CSF signal is predominantly represented by higher-affinity antibodies, potentially in a concentration range of NR1 antibodies between 0.1 and 5 µg/ml, roughly reflecting 1-10% of total CSF IgG in NMDAR encephalitis. Binding curves further depended on the CSF composition which must be considered when interpreting established clinical routine assays. Normalization of measurements using reference samples allowed high reproducibility. Accurate and reproducible measurement of NR1 antibody binding suggested that biophysical properties of the antibody might contribute to disease severity. Normalization of the data can be an elegant way to allow comparable inter-laboratory quantification of CSF NR1 antibody titers in autoimmune encephalitis patients, a prerequisite for use as surrogate markers in clinical trials. Based on our calculations, low-affinity antibodies can easily remain undetected in routine cell-based assays, indicating that their relation to clinical symptoms should be analyzed in future studies.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato/imunologia , Autoanticorpos/metabolismo , Receptores de N-Metil-D-Aspartato/imunologia , Encefalite Antirreceptor de N-Metil-D-Aspartato/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Citometria de Fluxo , Células HEK293 , Humanos , Imunoglobulina G/líquido cefalorraquidiano , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA