Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(9): e0263021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37751438

RESUMO

Disease is a neurodegenerative disorder characterised by the progressive loss of dopaminergic cells of the substantia nigra pars compacta. Even though successful transplantation of dopamine-producing cells into the striatum exhibits favourable effects in animal models and clinical trials; transplanted cell survival is low. Since every transplant elicits an inflammatory response which can affect cell survival and differentiation, we aimed to study in vivo and in vitro the impact of the pro-inflammatory environment on human dopaminergic precursors. We first observed that transplanted human dopaminergic precursors into the striatum of immunosuppressed rats elicited an early and sustained activation of astroglial and microglial cells after 15 days' post-transplant. This long-lasting response was associated with Tumour necrosis factor alpha expression in microglial cells. In vitro, conditioned media from activated BV2 microglial cells increased cell death, decreased Tyrosine hydroxylase-positive cells and induced morphological alterations on human neural stem cells-derived dopaminergic precursors at two differentiation stages: 19 days and 28 days. Those effects were ameliorated by inhibition of Tumour necrosis factor alpha, a cytokine which was previously detected in vivo and in conditioned media from activated BV-2 cells. Our results suggest that a pro-inflammatory environment is sustained after transplantation under immunosuppression, providing a window of opportunity to modify this response to increase transplant survival and differentiation. In addition, our data show that the microglia-derived pro-inflammatory microenvironment has a negative impact on survival and differentiation of dopaminergic precursors. Finally, Tumour necrosis factor alpha plays a key role in these effects, suggesting that this cytokine could be an interesting target to increase the efficacy of human dopaminergic precursors transplantation in Parkinson's Disease.


Assuntos
Microglia , Fator de Necrose Tumoral alfa , Humanos , Animais , Ratos , Fator de Necrose Tumoral alfa/farmacologia , Meios de Cultivo Condicionados/farmacologia , Dopamina , Diferenciação Celular , Citocinas
2.
mBio ; 13(1): e0344221, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35073758

RESUMO

Recent studies have shown a temporal increase in the neutralizing antibody potency and breadth to SARS-CoV-2 variants in coronavirus disease 2019 (COVID-19) convalescent individuals. Here, we examined longitudinal antibody responses and viral neutralizing capacity to the B.1 lineage virus (Wuhan related), to variants of concern (VOC; Alpha, Beta, Gamma, and Delta), and to a local variant of interest (VOI; Lambda) in volunteers receiving the Sputnik V vaccine in Argentina. Longitudinal serum samples (N = 536) collected from 118 volunteers obtained between January and October 2021 were used. The analysis indicates that while anti-spike IgG levels significantly wane over time, the neutralizing capacity for the Wuhan-related lineages of SARS-CoV-2 and VOC is maintained within 6 months of vaccination. In addition, an improved antibody cross-neutralizing ability for circulating variants of concern (Beta and Gamma) was observed over time postvaccination. The viral variants that displayed higher escape to neutralizing antibodies with respect to the original virus (Beta and Gamma variants) were the ones showing the largest increase in susceptibility to neutralization over time after vaccination. Our observations indicate that serum neutralizing antibodies are maintained for at least 6 months and show a reduction of VOC escape to neutralizing antibodies over time after vaccination. IMPORTANCE Vaccines have been produced in record time for SARS-CoV-2, offering the possibility of halting the global pandemic. However, inequalities in vaccine accessibility in different regions of the world create a need to increase international cooperation. Sputnik V is a recombinant adenovirus-based vaccine that has been widely used in Argentina and other developing countries, but limited information is available about its elicited immune responses. Here, we examined longitudinal antibody levels and viral neutralizing capacity elicited by Sputnik V vaccination. Using a cohort of 118 volunteers, we found that while anti-spike antibodies wane over time, the neutralizing capacity to viral variants of concern and local variants of interest is maintained within 4 months of vaccination. In addition, we observed an increased cross-neutralization activity over time for the Beta and Gamma variants. This study provides valuable information about the immune response generated by a vaccine platform used in many parts of the world.


Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Estudos Longitudinais , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/uso terapêutico
3.
Cell Rep Med ; 2(8): 100359, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34308389

RESUMO

Massive vaccination offers great promise for halting the global COVID-19 pandemic. However, the limited supply and uneven vaccine distribution create an urgent need to optimize vaccination strategies. We evaluate SARS-CoV-2-specific antibody responses after Sputnik V vaccination of healthcare workers in Argentina, measuring IgG anti-spike titers and neutralizing capacity after one and two doses in a cohort of naive or previously infected volunteers. By 21 days after receiving the first dose of the vaccine, 94% of naive participants develop spike-specific IgG antibodies. A single Sputnik V dose elicits higher antibody levels and virus-neutralizing capacity in previously infected individuals than in naive ones receiving the full two-dose schedule. The high seroconversion rate after a single dose in naive participants suggests a benefit of delaying administration of the second dose to increase the number of people vaccinated. The data presented provide information for guiding public health decisions in light of the current global health emergency.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Vacinas Sintéticas/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Argentina/epidemiologia , COVID-19/imunologia , Chlorocebus aethiops , Células HEK293 , Pessoal de Saúde , Humanos , Pandemias , SARS-CoV-2/patogenicidade , Soroconversão , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Vacinas , Células Vero
4.
Gene Ther ; 27(1-2): 6-14, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30992523

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease that affects more than 1% of people over the age of 60. The principal feature of this disease is the progressive loss of dopaminergic neurons (DAn) within the nigrostriatal system, causing the motor symptoms observed in these patients. At present, there is no therapeutic approach with a cytoprotective effect that can prevent DAn cell death or disease progression. Cell replacement therapy began 30 years ago with the objective to compensate for the loss of DAn by transplantation of dopamine-producing cells. The results from these trials have provided proof of concept of safety and efficacy of cell replacement. However, a major limiting factor of this strategy has been the poor survival rate of grafted DAn. An important factor that could cause cell death of DA precursors is the host response to the graft. In this review, we discuss the factors that affect the outcome of cell therapy in PD, with focus on the cell types used and the functional effects of the host immune response on graft survival and differentiation. We also discuss the strategies that may increase the efficacy of cell replacement therapy which target the host immune response.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/tendências , Doença de Parkinson/terapia , Animais , Diferenciação Celular/fisiologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Humanos , Imunomodulação/imunologia , Doenças Neurodegenerativas/imunologia , Doença de Parkinson/metabolismo , Transplante de Células-Tronco/métodos
5.
Brain Res ; 1638(Pt A): 15-29, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26239914

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder, whose cardinal pathology is the loss of dopaminergic neurons in the substantia nigra. Current treatments for PD have side effects in the long term and do not halt disease progression or regenerate dopaminergic cell loss. Attempts to compensate neuronal cell loss by transplantation of dopamine-producing cells started more than 30 years ago, leading to several clinical trials. These trials showed safety and variable efficacy among patients. In addition to variability in efficacy, several patients developed graft-induced dyskinesia. Nevertheless, they have provided a proof of concept that motor symptoms could be improved by cell transplantation. Cell transplantation in the brain presents several immunological challenges. The adaptive immune response should be abolished to avoid graft rejection by the host. In addition, the innate immune response will always be present after transplanting cells into the brain. Remarkably, the innate immune response can have dramatic effects on the survival, differentiation and proliferation of the transplanted cells, but has been hardly investigated. In this review, we analyze data on the functional effects of signals from the innate immune system on dopaminergic differentiation, survival and proliferation. Then, we discussed efforts on cell transplantation in animal models and PD patients, highlighting the immune response and the immunomodulatory treatment strategies performed. The analysis of the available data lead us to conclude that the modulation of the innate immune response after transplantation can increase the success of future clinical trials in PD by enhancing cell differentiation and survival. This article is part of a Special Issue entitled SI: PSC and the brain.


Assuntos
Neurônios Dopaminérgicos/patologia , Neurônios Dopaminérgicos/fisiologia , Células-Tronco Neurais/imunologia , Células-Tronco Neurais/transplante , Doença de Parkinson/imunologia , Doença de Parkinson/terapia , Animais , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Células-Tronco Embrionárias/transplante , Humanos , Células-Tronco Neurais/patologia , Doença de Parkinson/patologia , Células-Tronco Pluripotentes/fisiologia , Células-Tronco Pluripotentes/transplante , Transplante de Células-Tronco/métodos
6.
FEBS Lett ; 589(22): 3396-406, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26226418

RESUMO

Adult cells from patients can be reprogrammed to induced pluripotent stem cells (iPSCs) which successively can be used to obtain specific cells such as neurons. This remarkable breakthrough represents a new way of studying diseases and brought new therapeutic perspectives in the field of regenerative medicine. This is particular true in the neurology field, where few techniques are amenable to study the affected tissue of the patient during illness progression, in addition to the lack of neuroprotective therapies for many diseases. In this review we discuss the advantages and unresolved issues of cell reprogramming and neuronal differentiation. We reviewed evidence using iPSCs-derived neurons from neurological patients. Focusing on data obtained from Parkinson's disease (PD) patients, we show that iPSC-derived neurons possess morphological and functional characteristics of this disease and build a case for the use of this technology to study PD and other neuropathologies while disease is in progress. These data show the enormous impact that this new technology starts to have on different purposes such as the study and design of future therapies of neurological disease, especially PD.


Assuntos
Diferenciação Celular , Técnicas de Reprogramação Celular/métodos , Neurônios/patologia , Doença de Parkinson/patologia , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/citologia
7.
FEBS J ; 280(7): 1630-42, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23384249

RESUMO

Inflammation is a physiological defense response, but may also represent a potential pathological process in neurological diseases. In this regard, microglia have a crucial role in either progression or amelioration of degenerative neuronal damage. Because of the role of hypoxia in pro-inflammatory mechanisms in the nervous system, and the potential anti-inflammatory protective effect of erythropoietin (Epo), we focused our investigation on the role of this factor on activation of microglia and neuroprotection. Activation of microglial cells (EOC-2) was achieved by chemical hypoxia induced by cobalt chloride (CoCl2 ) and characterized by increased levels of nitrite, tumor necrosis factor-α and reactive oxygen species production, as well as up-regulation of inducible nitric oxide synthase expression. Under these conditions, cell proliferation data and proliferating cell nuclear antigen (PCNA) staining demonstrated a mitogenic effect of chemical hypoxia. Even though pre-treatment with Epo did not prevent nitrite production, inducible nitric oxide synthase protein expression or tumor necrosis factor-α secretion, it prevented the oxidative stress induced by CoCl2 as well as cell proliferation. Neuronal cells (SH-SY5Y) cultured in the presence of conditioned medium from activated EOC-2 cells or macrophages (RAW 264.7) developed significant apoptosis, an effect that was abolished by Epo via Epo/Epo receptor activation. The results show that even though Epo did not exert a direct anti-inflammatory effect on microglia activation, it did increase the resistance of neurons to subsequent damage from pro-inflammatory agents. In addition to its anti-apoptotic ability, the Epo antioxidant effect may have an indirect influence on neuronal survival by modulation of the pro-inflammatory environment.


Assuntos
Eritropoetina/metabolismo , Microglia/metabolismo , Microglia/patologia , Animais , Hipóxia Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cobalto/farmacologia , Meios de Cultivo Condicionados/farmacologia , Eritropoetina/farmacologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Nitritos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores da Eritropoetina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Cell Biochem Biophys ; 65(2): 145-57, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22903352

RESUMO

Eryptosis is a process by which mature erythrocytes can undergo self-destruction sharing several features with apoptosis. Premature programmed erythrocyte death may be induced by different agents. In this study, we compared mechanisms involved in two eryptotic models (oxidative stress and cell calcium overload) so as to distinguish whether they share signaling pathways and could be prevented by erythropoietin (Epo). Phosphatidylserine (PS) translocation and increased calcium content were common signs in erythrocytes exposed to sodium nitrite plus hydrogen peroxide or calcium ionophore A23187 (CaI), while increased ROS and decreased GSH levels were detected in the oxidative model. Protein kinase activation seemed to be an outstanding feature in eryptosis induced by oxidative stress, whereas phosphatase activation was favored in the CaI model. Cell morphology and membrane protein modifications were also differential signs between both models. Epo was able to prevent cell oxidative imbalance, thus blunting PS translocation. However, the hormone favored intracellular calcium influx which could be the reason why it could not completely counteract the induction of eryptosis. Instead, Epo was unable to inhibit PS externalization in the CaI model. The different mechanisms involved in the eryptotic models may explain the differential action of Epo upon erythrocytes induced to eryptosis by different agents.


Assuntos
Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Eritrócitos/efeitos dos fármacos , Eritropoetina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Adulto , Calcimicina/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Eritrócitos/citologia , Eritrócitos/metabolismo , Exocitose/efeitos dos fármacos , Citometria de Fluxo , Humanos , Peróxido de Hidrogênio/farmacologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ionóforos/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilserinas/metabolismo , Nitrito de Sódio/farmacologia
9.
Arch Biochem Biophys ; 505(2): 242-9, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20937240

RESUMO

Erythropoietin (Epo) is crucial for promoting the survival, proliferation, and differentiation of mammalian erythroid progenitors. The central role played by tyrosine phosphorylation of erythropoietin receptor (EpoR) in Epo-cell activation has focused attention on protein tyrosine phosphatases (PTPs) as candidates implicated in the pathogenesis of the resistance to therapy with human recombinant Epo. Prototypic member of the PTP family is PTP1B, which has been implicated in the regulation of EpoR signaling pathways. In previous reports we have shown that PTP1B is reciprocally modulated by Epo in undifferentiated UT-7 cell line. However, no information is available with respect to the modulation of this phosphatase in non-Epo depending cells or at late stages of erythroid differentiation. In order to investigate these issues we induced UT-7 cells to differentiate and studied their PTP1B expression pattern. Simultaneous observations were performed in TF-1 cells which can be cultured either with GM-CSF, IL-3 or Epo. We found that Epo induced PTP1B cleaveage in TF-1 and differentiated UT-7 cells. This pattern of PTP1B modulation may be due to an increased TRPC3/TRPC6 expression ratio which could explain the larger and sustained calcium response to Epo and calpain activation in Epo treated TF-1 and differentiated UT-7 cells.


Assuntos
Cálcio/metabolismo , Eritropoetina/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Calpaína/metabolismo , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Humanos , Espaço Intracelular/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Peso Molecular , Fosforilação , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6 , Tirosina/metabolismo
10.
J Cell Biochem ; 110(1): 151-61, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20225234

RESUMO

Erythropoietin (Epo) is known to have a significant role in tissues outside the hematopoietic system. In this work, we investigated the function of Epo in cells of neuronal origin subjected to differentiation. Treatment of SH-SY5Y cells with all-trans-retinoic acid (atRA) generated differentiated neuron-like cells, observed by increased expression of neuronal markers and morphological changes. Exposure of undifferentiated cells to proapoptotic stimuli such as staurosporine, TNF-alpha, or hypoxia, significantly increased programmed cell death, which was prevented by previous treatment with Epo. In contrast, atRA-differentiated cultures showed cell resistance to apoptosis. No additional effect of Epo was detected in previously differentiated cells. The inhibition of the PI3K/Akt pathway by Ly294002 abrogated the protective effects induced by either Epo or atRA. The effect of atRA was mediated by an increased expression of Bcl-2 whereas the Epo treatment upregulated not only Bcl-2 but also Bcl-xL. This upregulation by Epo was not detected in atRA-differentiated cells, thus confirming the lack of the protective effect of Epo. As expected, assays with AG490, an inhibitor of Jak2, blocked the Epo action only in undifferentiated cells. This reduced neuroprotective function of Epo on SH-SY5Y differentiated cells could be explained at least in part by downregulation of the Epo receptor expression, which was observed in atRA-differentiated cells. This study shows differential cellular protection induced by Epo at two stages of SH-SY5Y differentiation. The results allow us to suggest that this differential cell behavior can be ascribed to the interaction between atRA and the signaling pathways mediated by Epo.


Assuntos
Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Eritropoetina/farmacologia , Tretinoína/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Recombinantes , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...