Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 8: 817, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104542

RESUMO

[This corrects the article on p. 645 in vol. 8, PMID: 28912729.].

2.
Front Physiol ; 8: 645, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28912729

RESUMO

Even today two bacterial lung infections, namely pneumonia and tuberculosis, are among the 10 most frequent causes of death worldwide. These infections still lack effective treatments in many developing countries and in immunocompromised populations like infants, elderly people and transplanted patients. The interaction between bacteria and the host is a complex system of interlinked intercellular and the intracellular processes, enriched in regulatory structures like positive and negative feedback loops. Severe pathological condition can emerge when the immune system of the host fails to neutralize the infection. This failure can result in systemic spreading of pathogens or overwhelming immune response followed by a systemic inflammatory response. Mathematical modeling is a promising tool to dissect the complexity underlying pathogenesis of bacterial lung infection at the molecular, cellular and tissue levels, and also at the interfaces among levels. In this article, we introduce mathematical and computational modeling frameworks that can be used for investigating molecular and cellular mechanisms underlying bacterial lung infection. Then, we compile and discuss published results on the modeling of regulatory pathways and cell populations relevant for lung infection and inflammation. Finally, we discuss how to make use of this multiplicity of modeling approaches to open new avenues in the search of the molecular and cellular mechanisms underlying bacterial infection in the lung.

3.
J Immunol ; 198(5): 2191-2201, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28137890

RESUMO

Macrophages (Mϕs) are key players in the coordination of the lifesaving or detrimental immune response against infections. The mechanistic understanding of the functional modulation of Mϕs by pathogens and pharmaceutical interventions at the signal transduction level is still far from complete. The complexity of pathways and their cross-talk benefits from holistic computational approaches. In the present study, we reconstructed a comprehensive, validated, and annotated map of signal transduction pathways in inflammatory Mϕs based on the current literature. In a second step, we selectively expanded this curated map with database knowledge. We provide both versions to the scientific community via a Web platform that is designed to facilitate exploration and analysis of high-throughput data. The platform comes preloaded with logarithmic fold changes from 44 data sets on Mϕ stimulation. We exploited three of these data sets-human primary Mϕs infected with the common lung pathogens Streptococcus pneumoniae, Legionella pneumophila, or Mycobacterium tuberculosis-in a case study to show how our map can be customized with expression data to pinpoint regulated subnetworks and druggable molecules. From the three infection scenarios, we extracted a regulatory core of 41 factors, including TNF, CCL5, CXCL10, IL-18, and IL-12 p40, and identified 140 drugs targeting 16 of them. Our approach promotes a comprehensive systems biology strategy for the exploitation of high-throughput data in the context of Mϕ signal transduction. In conclusion, we provide a set of tools to help scientists unravel details of Mϕ signaling. The interactive version of our Mϕ signal transduction map is accessible online at https://vcells.net/macrophage.


Assuntos
Inflamação/imunologia , Legionella pneumophila/imunologia , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Infecções Respiratórias/imunologia , Transdução de Sinais , Streptococcus pneumoniae/imunologia , Biologia Computacional , Conjuntos de Dados como Assunto , Redes Reguladoras de Genes , Ensaios de Triagem em Larga Escala , Humanos , Imunomodulação , Software , Biologia de Sistemas
4.
PLoS Negl Trop Dis ; 8(2): e2694, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24551257

RESUMO

BACKGROUND: Anthroponotic cutaneous leishmaniasis (CL) due to Leishmania (L.) tropica infection is a chronic, frequently disfiguring skin disease with limited therapeutic options. In endemic countries healing of ulcerative lesions is often delayed by bacterial and/or fungal infections. Here, we studied a novel therapeutic concept to prevent superinfections, accelerate wound closure, and improve the cosmetic outcome of ACL. METHODOLOGY/PRINCIPAL FINDINGS: From 2004 to 2008 we performed a two-armed, randomized, double-blinded, phase IIa trial in Kabul, Afghanistan, with patients suffering from L. tropica CL. The skin lesions were treated with bipolar high-frequency electrocauterization (EC) followed by daily moist-wound-treatment (MWT) with polyacrylate hydrogel with (group I) or without (group II) pharmaceutical sodium chlorite (DAC N-055). Patients below age 5, with facial lesions, pregnancy, or serious comorbidities were excluded. The primary, photodocumented outcome was the time needed for complete lesion epithelialization. Biopsies for parasitological and (immuno)histopathological analyses were taken prior to EC (1(st)), after wound closure (2(nd)) and after 6 months (3(rd)). The mean duration for complete wound closure was short and indifferent in group I (59 patients, 43.1 d) and II (54 patients, 42 d; p = 0.83). In patients with Leishmania-positive 2(nd) biopsies DAC N-055 caused a more rapid wound epithelialization (37.2 d vs. 58.3 d; p = 0.08). Superinfections occurred in both groups at the same rate (8.8%). Except for one patient, reulcerations (10.2% in group I, 18.5% in group II; p = 0.158) were confined to cases with persistent high parasite loads after healing. In vitro, DAC N-055 showed a leishmanicidal effect on pro- and amastigotes. CONCLUSIONS/SIGNIFICANCE: Compared to previous results with intralesional antimony injections, the EC plus MWT protocol led to more rapid wound closure. The tentatively lower rate of relapses and the acceleration of wound closure in a subgroup of patients with parasite persistence warrant future studies on the activity of DAC N-055. TRIAL REGISTRATION: ClinicalTrials.gov NCT00947362.


Assuntos
Cloretos/uso terapêutico , Eletrocoagulação , Leishmaniose Cutânea/epidemiologia , Leishmaniose Cutânea/terapia , Cicatrização/efeitos dos fármacos , Adolescente , Adulto , Afeganistão/epidemiologia , Idoso , Criança , Pré-Escolar , Cloretos/farmacologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Carga Parasitária , Adulto Jovem
5.
J Allergy Clin Immunol ; 126(3): 648-56.e1-4, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20621350

RESUMO

BACKGROUND: Extract from cowshed dust (CDE) is a source of immunomodulating substances. We have previously shown that such substances protect from experimental allergic disorders in a mouse model of asthma. OBJECTIVE: The objective of this study was to identify immunomodulatory molecules in extracts of dust from an allergy protective farming environment. METHODS: Polysaccharides were isolated from CDE and plants by chromatography and precipitation with specific reagents. Polysaccharides were then characterized by nuclear magnetic resonance spectroscopy. Subsequently, the allergy-protective potential of isolated polysaccharides was tested in a mouse model of asthma. RESULTS: The authors demonstrate that plant arabinogalactans are contained in CDE in high concentrations. The source of this arabinogalactan is fodder, in particular a prevalent grass species known as Alopecurus pratensis. Treatment of murine dendritic cells with grass arabinogalactan resulted in autocrine IL-10 production. Interestingly, these dendritic cells were not able to induce an allergic immune response. Furthermore, intranasal application of grass arabinogalactan protected mice from developing atopic sensitization, allergic airway inflammation and airway hyperreactivity in a mouse model of allergic asthma. This allergy-protective effect is specific for grass arabinogalactan because control experiments with arabinogalactan from gum arabic and larch revealed that these molecules do not show allergy-protective properties. This is likely because of structural differences because we were able to show by nuclear magnetic resonance spectroscopy that although they are predominantly composed of arabinose and galactose, the molecules differ in structure. CONCLUSIONS: The authors conclude that grass arabinogalactans are important immunomodulatory substances that contribute to the protection from allergic airway inflammation, airway hyperresponsiveness, and atopic sensitization in a mouse model of asthma.


Assuntos
Hiper-Reatividade Brônquica/prevenção & controle , Células Dendríticas/imunologia , Poeira , Galactanos/farmacologia , Sistema Respiratório/efeitos dos fármacos , Animais , Hiper-Reatividade Brônquica/imunologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Galactanos/isolamento & purificação , Fatores Imunológicos/imunologia , Interleucina-10/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Poaceae/química , Sistema Respiratório/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA