Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 104(3): e3947, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36494323

RESUMO

The movement of plant species across the globe exposes native communities to new species introductions. While introductions are pervasive, two aspects of variability underlie patterns and processes of biological invasions at macroecological scales. First, only a portion of introduced species become invaders capable of substantially impacting ecosystems. Second, species that do become invasive at one location may not be invasive in others; impacts depend on invader abundance and recipient species and conditions. Accounting for these phenomena is essential to accurately understand the patterns of plant invasion and explain the idiosyncratic results reflected in the literature on biological invasions. The lack of community-level richness and the abundance of data spanning broad scales and environmental conditions have until now hindered our understanding of invasions at a macroecological scale. To address this limitation, we leveraged quantitative surveys of plant communities in the USA and integrated and harmonized nine datasets into the Standardized Plant Community with Introduced Status (SPCIS) database. The database contains 14,056 unique taxa identified within 83,391 sampling units, of which 52.6% have at least one introduced species. The SPCIS database includes comparable information on plant species occurrence, abundance, and native status across the 50 U.S. States and Puerto Rico. SPCIS can be used to answer macro-scale questions about native plant communities and interactions with invasive plants. There are no copyright restrictions on the data, and we ask the users of this dataset to cite this paper, the respective paper(s) corresponding to the dataset sampling design (all references are provided in Data S1: Metadata S1: Class II-B-2), and the references described in Data S1: Metadata S1: Class III-B-4 as applicable to the dataset being utilized.


Assuntos
Ecossistema , Plantas , Espécies Introduzidas , Porto Rico , Biodiversidade
2.
Plant Direct ; 4(8): e00252, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32904806

RESUMO

Plants, and the biological systems around them, are key to the future health of the planet and its inhabitants. The Plant Science Decadal Vision 2020-2030 frames our ability to perform vital and far-reaching research in plant systems sciences, essential to how we value participants and apply emerging technologies. We outline a comprehensive vision for addressing some of our most pressing global problems through discovery, practical applications, and education. The Decadal Vision was developed by the participants at the Plant Summit 2019, a community event organized by the Plant Science Research Network. The Decadal Vision describes a holistic vision for the next decade of plant science that blends recommendations for research, people, and technology. Going beyond discoveries and applications, we, the plant science community, must implement bold, innovative changes to research cultures and training paradigms in this era of automation, virtualization, and the looming shadow of climate change. Our vision and hopes for the next decade are encapsulated in the phrase reimagining the potential of plants for a healthy and sustainable future. The Decadal Vision recognizes the vital intersection of human and scientific elements and demands an integrated implementation of strategies for research (Goals 1-4), people (Goals 5 and 6), and technology (Goals 7 and 8). This report is intended to help inspire and guide the research community, scientific societies, federal funding agencies, private philanthropies, corporations, educators, entrepreneurs, and early career researchers over the next 10 years. The research encompass experimental and computational approaches to understanding and predicting ecosystem behavior; novel production systems for food, feed, and fiber with greater crop diversity, efficiency, productivity, and resilience that improve ecosystem health; approaches to realize the potential for advances in nutrition, discovery and engineering of plant-based medicines, and "green infrastructure." Launching the Transparent Plant will use experimental and computational approaches to break down the phytobiome into a "parts store" that supports tinkering and supports query, prediction, and rapid-response problem solving. Equity, diversity, and inclusion are indispensable cornerstones of realizing our vision. We make recommendations around funding and systems that support customized professional development. Plant systems are frequently taken for granted therefore we make recommendations to improve plant awareness and community science programs to increase understanding of scientific research. We prioritize emerging technologies, focusing on non-invasive imaging, sensors, and plug-and-play portable lab technologies, coupled with enabling computational advances. Plant systems science will benefit from data management and future advances in automation, machine learning, natural language processing, and artificial intelligence-assisted data integration, pattern identification, and decision making. Implementation of this vision will transform plant systems science and ripple outwards through society and across the globe. Beyond deepening our biological understanding, we envision entirely new applications. We further anticipate a wave of diversification of plant systems practitioners while stimulating community engagement, underpinning increasing entrepreneurship. This surge of engagement and knowledge will help satisfy and stoke people's natural curiosity about the future, and their desire to prepare for it, as they seek fuller information about food, health, climate and ecological systems.

3.
Nutrients ; 12(7)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679788

RESUMO

COVID-19 has disrupted food access and impacted food insecurity, which is associated with numerous adverse individual and public health outcomes. To assess these challenges and understand their impact on food security, we conducted a statewide population-level survey using a convenience sample in Vermont from March 29 to April 12, 2020, during the beginning of a statewide stay-at-home order. We utilized the United States Department of Agriculture six-item validated food security module to measure food insecurity before COVID-19 and since COVID-19. We assessed food insecurity prevalence and reported food access challenges, coping strategies, and perceived helpful interventions among food secure, consistently food insecure (pre-and post-COVID-19), and newly food insecure (post COVID-19) respondents. Among 3219 respondents, there was nearly a one-third increase (32.3%) in household food insecurity since COVID-19 (p < 0.001), with 35.5% of food insecure households classified as newly food insecure. Respondents experiencing a job loss were at higher odds of experiencing food insecurity (OR 3.06; 95% CI, 2.114-0.46). We report multiple physical and economic barriers, as well as concerns related to food access during COVID-19. Respondents experiencing household food insecurity had higher odds of facing access challenges and utilizing coping strategies, including two-thirds of households eating less since COVID-19 (p < 0.001). Significant differences in coping strategies were documented between respondents in newly food insecure vs. consistently insecure households. These findings have important potential impacts on individual health, including mental health and malnutrition, as well as on future healthcare costs. We suggest proactive strategies to address food insecurity during this crisis.


Assuntos
Infecções por Coronavirus , Abastecimento de Alimentos/estatística & dados numéricos , Pandemias , Pneumonia Viral , Quarentena/estatística & dados numéricos , Adaptação Psicológica , Adulto , Betacoronavirus , COVID-19 , Características da Família , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , SARS-CoV-2 , Fatores Socioeconômicos , Desemprego/psicologia , Desemprego/estatística & dados numéricos , Vermont/epidemiologia
4.
Ecology ; 101(10): e03119, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32535899

RESUMO

The goal of elucidating the primary mechanisms constraining the assembly and distribution of biodiversity remains among the central unresolved challenges facing the field of ecology. Simulation studies and experimental manipulations have focused on how patterns in community assembly result from bivariate relationships along productivity or environmental gradients. However, the joint influence of multiple resource gradients on the distribution of species richness in natural communities remains understudied. Using data from a large network of multiscale vegetation plots across forests and woodlands of the southeastern United States, we find significant evidence for the scale-dependent, joint constraints of forest structure and soil resources on the distribution of vascular plant species richness. In addition to their significant partial effects on species richness, understory light levels and soil fertility positively interact, suggesting a trade-off between the two limiting resources with species richness peaking both in high-light, low-fertility conditions as well as low-light, high-fertility settings. This finding provides a novel perspective on the biodiversity-productivity relationship that suggests a transition in limiting resources from soil nutrients to light availability when enhanced productivity results in reduced light resources for subordinate individuals. Results likewise have meaningful implications for our understanding of scale-dependent community assembly processes as size-asymmetric competition replaces environmental filtering as the primary assembly mechanism structuring temperate forest communities along an increasing soil fertility gradient.


Assuntos
Florestas , Árvores , Biodiversidade , Humanos , Plantas , Sudeste dos Estados Unidos
5.
Ecology ; 96(12): 3363-73, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26909441

RESUMO

Several studies have demonstrated that floras of the New World contain larger proportions of alien species than those of the Old World; however, the differences in fine-scale invasion patterns are poorly known. We compared the levels of invasion in analogous habitats of two environmentally similar regions in temperate North America and Europe (the Carolinas and the Czech Republic), using comprehensive vegetation-plot databases. Native and alien vascular plant species were identified within 4165 vegetation plots assigned to 12 habitats occurring in both areas. The level of invasion was calculated for each habitat (1) as the proportion of aliens recorded cumulatively across multiple plots (habitat scale) and (2) as the mean proportion of aliens per plot (plot scale), both separately for all alien species and for the subgroup of aliens originating in one region and invading the other. The proportions of species native on one continent and invading the other were also calculated for each habitat to compare the alien species exchange between continents. Habitat levels of invasion showed remarkably similar patterns on the two continents. There were significant positive relationships for the levels of invasion, both for all alien species (habitat-scale R2 = 0.907; plot-scale R2 = 0.676) and for those that originated on the opposite continent (habitat-scale R2 = 0.624; plot-scale R2 = 0.708). In both regions, the most and the least invaded habitats were the same, but on average, North American habitats showed higher habitat-scale levels of invasion than their European counterparts. At the same time, a larger proportion of alien species was provided by European habitats for invasion to North America than vice versa. The consistent intercontinental pattern of habitat levels of invasion suggests that these levels are driven by similar mechanisms in distant regions. Habitat conditions are likely to have stronger effect on the level of invasion than the identity of alien species, as shown by similar levels of invasion in analogous habitats despite different geographical origins of alien species. The higher flux of alien species from Europe to North America is consistent with a generally higher level of invasion of North American habitats.


Assuntos
Ecossistema , Espécies Introduzidas , Plantas/classificação , Clima , República Tcheca , North Carolina , South Carolina
6.
Mol Ecol ; 20(14): 2901-15, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21672067

RESUMO

Establishing the phylogenetic and demographic history of rare plants improves our understanding of mechanisms that have led to their origin and can lead to valuable insights that inform conservation decisions. The Atlantic coastal plain of eastern North America harbours many rare and endemic species, yet their evolution is poorly understood. We investigate the rare Sandhills lily (Lilium pyrophilum), which is endemic to seepage slopes in a restricted area of the Atlantic coastal plain of eastern North America. Using phylogenetic evidence from chloroplast, nuclear internal transcribed spacer and two low-copy nuclear genes, we establish a close relationship between L. pyrophilum and the widespread Turk's cap lily, L. superbum. Isolation-with-migration and coalescent simulation analyses suggest that (i) the divergence between these two species falls in the late Pleistocene or Holocene and almost certainly post-dates the establishment of the edaphic conditions to which L. pyrophilum is presently restricted, (ii) vicariance is responsible for the present range disjunction between the two species, and that subsequent gene flow has been asymmetrical and (iii) L. pyrophilum harbours substantial genetic diversity in spite of its present rarity. This system provides an example of the role of edaphic specialization and climate change in promoting diversification in the Atlantic coastal plain.


Assuntos
Especiação Genética , Variação Genética , Lilium/genética , Filogenia , DNA de Cloroplastos/genética , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Fluxo Gênico , Genética Populacional , Haplótipos , Modelos Genéticos , América do Norte , Análise de Sequência de DNA , Especificidade da Espécie
7.
Mol Ecol ; 19(19): 4302-14, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20819166

RESUMO

The general phylogeographical paradigm for eastern North America (ENA) is that many plant and animal species retreated into southern refugia during the last glacial period, then expanded northward after the last glacial maximum (LGM). However, some taxa of the Gulf and Atlantic Coastal Plain (GACP) demonstrate complex yet recurrent distributional patterns that cannot be explained by this model. For example, eight co-occurring endemic plant taxa with ranges from New York to South Carolina exhibit a large disjunction separating northern and southern populations by >300 km. Pyxidanthera (Diapensiaceae), a plant genus that exhibits this pattern, consists of two taxa recognized as either species or varieties. We investigated the taxonomy and phylogeography of Pyxidanthera using morphological data, cpDNA sequences, and amplified fragment length polymorphism markers. Morphological characters thought to be important in distinguishing Pyxidanthera barbulata and P. brevifolia demonstrate substantial overlap with no clear discontinuities. Genetic differentiation is minimal and diversity estimates for northern and southern populations of Pxyidanthera are similar, with no decrease in rare alleles in northern populations. In addition, the northern populations harbour several unique cpDNA haplotypes. Pyxidanthera appears to consist of one morphologically variable species that persisted in or near its present range at least through the latter Pleistocene, while the vicariance of the northern and southern populations may be comparatively recent. This work demonstrates that the refugial paradigm is not always appropriate and GACP endemic plants, in particular, may exhibit phylogeographical patterns qualitatively different from those of other ENA plant species.


Assuntos
Variação Genética , Genética Populacional , Magnoliopsida/genética , Alelos , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , DNA de Cloroplastos/genética , Haplótipos , Magnoliopsida/anatomia & histologia , Dados de Sequência Molecular , Filogeografia , Análise de Sequência de DNA
8.
Tree Physiol ; 28(6): 847-53, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18381265

RESUMO

Resin flow is the primary means of natural defense against southern pine beetle (Dendroctonus frontalis Zimm.), the most important insect pest of Pinus spp. in the southern United States. As a result, factors affecting resin flow are of interest to researchers and forest managers. We examined the influence of fertilization, artificial wounding and fungal inoculation on resin flow in 6- and 12-year-old stands of loblolly pine (Pinus taeda L.) and determined the extent of that influence within and above the wounded stem area and through time. Fertilization increased constitutive resin flow, but only the younger trees sustained increased resin flow after wounding and inoculation treatments. An induced resin flow response occurred between 1 and 30 days after wounding and inoculation treatments. Wounding with inoculation resulted in greater resin flow than wounding alone, but increasing amounts of inoculum did not increase resin flow. Increased resin flow (relative to controls) lasted for at least 90 days after wounding and inoculation. This increase appeared to be limited to the area of treatment, at least in younger trees. The long-lasting effects of fungal inoculation on resin flow, as well as the response to fertilization, suggest that acquired resistance through induced resin flow aids in decreasing susceptibility of loblolly pine to southern pine beetle.


Assuntos
Fertilizantes , Pinus taeda , Animais , Besouros , North Carolina , Pinus taeda/efeitos dos fármacos , Pinus taeda/crescimento & desenvolvimento , Pinus taeda/microbiologia , Pinus taeda/parasitologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Árvores/efeitos dos fármacos , Árvores/crescimento & desenvolvimento , Árvores/microbiologia , Árvores/parasitologia , Ferimentos e Lesões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...