Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
EJNMMI Radiopharm Chem ; 9(1): 28, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564046

RESUMO

BACKGROUND: (S)-[18F]FETrp is a promising PET radiotracer for imaging IDO1 activity, one of the main enzymes involved in the tryptophan metabolism that plays a key role in several diseases including cancers. To date, the radiosynthesis of this tryptophan analogue remains highly challenging due to partial racemization occurring during the nucleophilic radiofluorination step. This work aims to develop a short, epimerization-free and efficient automated procedure of (S)-[18F]FETrp from a corresponding enantiopure tosylate precursor. RESULTS: Enantiomerically pure (S)- and (R)-FETrp references as well as tosylate precursors (S)- and (R)-3 were obtained from corresponding Na-Boc-(L and D)-tryptophan in 2 and 4 steps, respectively. Manual optimisation of the radiolabelling conditions resulted in > 90% radiochemical conversion with more than 99% enantiomeric purity. Based on these results, the (S)-[18F]FETrp radiosynthesis was fully automated on a SynChrom R&D EVOI module to produce the radiotracer in 55.2 ± 7.5% radiochemical yield, 99.9% radiochemical purity, 99.1 ± 0.5% enantiomeric excess, and molar activity of 53.2 ± 9.3 GBq/µmol (n = 3). CONCLUSIONS: To avoid racemisation and complicated purification processes, currently encountered for the radiosynthesis of (S)-[18F]FETrp, we report herein significant improvements, including a versatile synthesis of enantiomerically pure tosylate precursor and reference compound and a convenient one-pot two-step automated procedure for the radiosynthesis of (S)-[18F]FETrp. This optimised and robust production method could facilitate further investigations of this relevant PET radiotracer for imaging IDO1 activity.

3.
Eur J Nucl Med Mol Imaging ; 51(4): 1085-1096, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37982850

RESUMO

Glioma are clinically challenging tumors due to their location and invasiveness nature, which often hinder complete surgical resection. The evaluation of the isocitrate dehydrogenase mutation status has become crucial for effective patient stratification. Through a transdisciplinary approach, we have developed an 18F-labeled ligand for non-invasive assessment of the IDH1R132H variant by using positron emission tomography (PET) imaging. In this study, we have successfully prepared diastereomerically pure [18F]AG-120 by copper-mediated radiofluorination of the stannyl precursor 6 on a TRACERlab FX2 N radiosynthesis module. In vitro internalization studies demonstrated significantly higher uptake of [18F]AG-120 in U251 human high-grade glioma cells with stable overexpression of mutant IDH1 (IDH1R132H) compared to their wild-type IDH1 counterpart (0.4 vs. 0.013% applied dose/µg protein at 120 min). In vivo studies conducted in mice, exhibited the excellent metabolic stability of [18F]AG-120, with parent fractions of 85% and 91% in plasma and brain at 30 min p.i., respectively. Dynamic PET studies with [18F]AG-120 in naïve mice and orthotopic glioma rat model reveal limited blood-brain barrier permeation along with a low uptake in the brain tumor. Interestingly, there was no significant difference in uptake between mutant IDH1R132H and wild-type IDH1 tumors (tumor-to-blood ratio[40-60 min]: ~1.7 vs. ~1.3). In conclusion, our preclinical evaluation demonstrated a target-specific internalization of [18F]AG-120 in vitro, a high metabolic stability in vivo in mice, and a slightly higher accumulation of activity in IDH1R132H-glioma compared to IDH1-glioma. Overall, our findings contribute to advancing the field of molecular imaging and encourage the evaluation of [18F]AG-120 to improve diagnosis and management of glioma and other IDH1R132H-related tumors.


Assuntos
Neoplasias Encefálicas , Glioma , Glicina/análogos & derivados , Piridinas , Humanos , Camundongos , Ratos , Animais , Isocitrato Desidrogenase/genética , Glioma/genética , Tomografia por Emissão de Pósitrons/métodos , Neoplasias Encefálicas/genética
4.
J Med Chem ; 66(20): 13991-14010, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37816245

RESUMO

The development of cannabinoid receptor type 2 (CB2R) PET radioligands has been intensively explored due to the pronounced CB2R upregulation under various pathological conditions. Herein, we report on the synthesis of a series of CB2R affine fluorinated indole-2-carboxamide ligands. Compound RM365 was selected for PET radiotracer development due to its high CB2R affinity (Ki = 2.1 nM) and selectivity over CB1R (factor > 300). Preliminary in vitro evaluation of [18F]RM365 indicated species differences in the binding to CB2R (KD of 2.32 nM for the hCB2R vs KD > 10,000 nM for the rCB2R). Metabolism studies in mice revealed a high in vivo stability of [18F]RM365. PET imaging in a rat model of local hCB2R(D80N) overexpression in the brain demonstrates the ability of [18F]RM365 to reach and selectively label the hCB2R(D80N) with a high signal-to-background ratio. Thus, [18F]RM365 is a very promising PET radioligand for the imaging of upregulated hCB2R expression under pathological conditions.


Assuntos
Encéfalo , Tomografia por Emissão de Pósitrons , Humanos , Ratos , Camundongos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Relação Estrutura-Atividade , Tomografia por Emissão de Pósitrons/métodos , Receptores de Canabinoides/metabolismo , Receptor CB2 de Canabinoide/metabolismo
5.
Nanomaterials (Basel) ; 13(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37513105

RESUMO

This study describes the synthesis, radiofluorination and purification of an anionic amphiphilic teroligomer developed as a stabilizer for siRNA-loaded calcium phosphate nanoparticles (CaP-NPs). As the stabilizing amphiphile accumulates on nanoparticle surfaces, the fluorine-18-labeled polymer should enable to track the distribution of the CaP-NPs in brain tumors by positron emission tomography after application by convection-enhanced delivery. At first, an unmodified teroligomer was synthesized with a number average molecular weight of 4550 ± 20 Da by free radical polymerization of a defined composition of methoxy-PEG-monomethacrylate, tetradecyl acrylate and maleic anhydride. Subsequent derivatization of anhydrides with azido-TEG-amine provided an azido-functionalized polymer precursor (o14PEGMA-N3) for radiofluorination. The 18F-labeling was accomplished through the copper-catalyzed cycloaddition of o14PEGMA-N3 with diethylene glycol-alkyne-substituted heteroaromatic prosthetic group [18F]2, which was synthesized with a radiochemical yield (RCY) of about 38% within 60 min using a radiosynthesis module. The 18F-labeled polymer [18F]fluoro-o14PEGMA was obtained after a short reaction time of 2-3 min by using CuSO4/sodium ascorbate at 90 °C. Purification was performed by solid-phase extraction on an anion-exchange cartridge followed by size-exclusion chromatography to obtain [18F]fluoro-o14PEGMA with a high radiochemical purity and an RCY of about 15%.

6.
J Labelled Comp Radiopharm ; 66(3): 116-125, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36807307

RESUMO

[18 F]FTC-146 was introduced as a very potent and selective sigma-1 receptor radioligand, which has shown promising application as an imaging agent for neuropathic pain with positron emission tomography. In line with a multi-laboratory project on animal welfare, we chose this radioligand to investigate its potential for detecting neuropathic pain and tissue damage in tumor-bearing animals. However, the radiochemical yield (RCY) of around 4-7% was not satisfactory to us, and efforts were made to improve it. Herein, we describe an improved approach for the radiosynthesis of [18 F]FTC-146 resulting in a RCY, which is sevenfold higher than that previously reported. A tosylate precursor was synthesized and radio-fluorination experiments were performed via aliphatic nucleophilic substitution reactions using either K[18 F]F-Kryptofix®222 (K2.2.2 )-carbonate system or tetra-n-butylammonium [18 F]fluoride ([18 F]TBAF). Several parameters affecting the radiolabeling reaction such as solvent, 18 F-fluorination agent with the corresponding amount of base, labeling time, and temperature were investigated. Best labeling reaction conditions were found to be [18 F]TBAF and acetonitrile as solvent at 100°C. The new protocol was then translated to an automated procedure using a FX2 N synthesis module. Finally, the radiotracer reproducibly obtained with RCYs of 41.7 ± 4.4% in high radiochemical purity (>98%) and molar activities up to 171 GBq/µmol.


Assuntos
Tomografia por Emissão de Pósitrons , Receptores sigma , Animais , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Radioisótopos de Flúor , Solventes , Receptor Sigma-1
7.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36297384

RESUMO

The cyclic nucleotide phosphodiesterase 2A is an intracellular enzyme which hydrolyzes the secondary messengers cAMP and cGMP and therefore plays an important role in signaling cascades. A high expression in distinct brain areas as well as in cancer cells makes PDE2A an interesting therapeutic and diagnostic target for neurodegenerative and neuropsychiatric diseases as well as for cancer. Aiming at specific imaging of this enzyme in the brain with positron emission tomography (PET), a new triazolopyridopyrazine-based derivative (11) was identified as a potent PDE2A inhibitor (IC50, PDE2A = 1.99 nM; IC50, PDE10A ~2000 nM) and has been radiofluorinated for biological evaluation. In vitro autoradiographic studies revealed that [18F]11 binds with high affinity and excellent specificity towards PDE2A in the rat brain. For the PDE2A-rich region nucleus caudate and putamen an apparent KD value of 0.24 nM and an apparent Bmax value of 16 pmol/mg protein were estimated. In vivo PET-MR studies in rats showed a moderate brain uptake of [18F]11 with a highest standardized uptake value (SUV) of 0.97. However, no considerable enrichment in PDE2A-specific regions in comparison to a reference region was detectable (SUVcaudate putamen = 0.51 vs. SUVcerebellum = 0.40 at 15 min p.i.). Furthermore, metabolism studies revealed a considerable uptake of radiometabolites of [18F]11 in the brain (66% parent fraction at 30 min p.i.). Altogether, despite the low specificity and the blood−brain barrier crossing of radiometabolites observed in vivo, [18F]11 is a valuable imaging probe for the in vitro investigation of PDE2A in the brain and has potential as a lead compound for further development of a PDE2A-specific PET ligand for neuroimaging.

8.
Molecules ; 27(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35744895

RESUMO

Isocitrate dehydrogenases (IDHs) are metabolic enzymes commonly mutated in human cancers (glioma, acute myeloid leukaemia, chondrosarcoma, and intrahepatic cholangiocarcinoma). These mutated variants of IDH (mIDH) acquire a neomorphic activity, namely, conversion of α-ketoglutarate to the oncometabolite D-2-hydroxyglutarate involved in tumourigenesis. Thus, mIDHs have emerged as highly promising therapeutic targets, and several mIDH specific inhibitors have been developed. However, the evaluation of mIDH status, currently performed by biopsy, is essential for patient stratification and thus treatment and follow-up. We report herein the development of new radioiodinated and radiofluorinated analogues of olutasidenib (FT-2102) as tools for noninvasive single photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging of mIDH1 up- and dysregulation in tumours. Nonradiolabelled derivatives 2 and 3 halogenated at position 6 of the quinolinone scaffold were synthesised and tested in vitro for their inhibitory potencies and selectivities in comparison with the lead compound FT-2102. Using a common organotin precursor, (S)-[125I]2 and (S)-[18F]3 were efficiently synthesised by radio-iododemetallation and copper-mediated radiofluorination, respectively. Both radiotracers were stable at room temperature in saline or DPBS solution and at 37 °C in mouse serum, allowing future planning of their in vitro and in vivo evaluations in glioma and chondrosarcoma models.


Assuntos
Neoplasias dos Ductos Biliares , Neoplasias Ósseas , Condrossarcoma , Glioma , Leucemia Mieloide Aguda , Animais , Ductos Biliares Intra-Hepáticos , Condrossarcoma/diagnóstico por imagem , Condrossarcoma/genética , Glioma/diagnóstico por imagem , Glioma/genética , Humanos , Camundongos , Mutação , Tomografia por Emissão de Pósitrons , Piridinas , Quinolinas , Tomografia Computadorizada de Emissão de Fóton Único
9.
Diabetes Obes Metab ; 24(7): 1360-1369, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35403793

RESUMO

AIM: To assess the efficacy, safety and tolerability of cotadutide in patients with type 2 diabetes mellitus and chronic kidney disease. MATERIALS AND METHODS: In this phase 2a study (NCT03550378), patients with body mass index 25-45 kg/m2 , estimated glomerular filtration rate 30-59 ml/min/1.73 m2 and type 2 diabetes [glycated haemoglobin 6.5-10.5% (48-91 mmol/mol)] controlled with insulin and/or oral therapy combination, were randomized 1:1 to once-daily subcutaneous cotadutide (50-300 µg) or placebo for 32 days. The primary endpoint was plasma glucose concentration assessed using a mixed-meal tolerance test. RESULTS: Participants receiving cotadutide (n = 21) had significant reductions in the mixed-meal tolerance test area under the glucose concentration-time curve (-26.71% vs. +3.68%, p < .001), more time in target glucose range on continuous glucose monitoring (+14.79% vs. -21.23%, p = .001) and significant reductions in absolute bodyweight (-3.41 kg vs. -0.13 kg, p < .001) versus placebo (n = 20). In patients with baseline micro- or macroalbuminuria (n = 18), urinary albumin-to-creatinine ratios decreased by 51% at day 32 with cotadutide versus placebo (p = .0504). No statistically significant difference was observed in mean change in estimated glomerular filtration rate between treatments. Mild/moderate adverse events occurred in 71.4% of participants receiving cotadutide and 35.0% receiving placebo. CONCLUSIONS: We established the efficacy of cotadutide in this patient population, with significantly improved postprandial glucose control and reduced bodyweight versus placebo. Reductions in urinary albumin-to-creatinine ratios suggest potential benefits of cotadutide on kidney function, supporting further evaluation in larger, longer-term clinical trials.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Renal Crônica , Albuminas , Glicemia , Automonitorização da Glicemia , Peso Corporal , Creatinina , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Método Duplo-Cego , Glucagon/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hemoglobinas Glicadas/análise , Humanos , Hipoglicemiantes/efeitos adversos , Peptídeos , Receptores de Glucagon , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico
10.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35337122

RESUMO

The degree of acetylation of lysine residues on histones influences the accessibility of DNA and, furthermore, the gene expression. Histone deacetylases (HDACs) are overexpressed in various tumour diseases, resulting in the interest in HDAC inhibitors for cancer therapy. The aim of this work is the development of a novel 18F-labelled HDAC1/2-specific inhibitor with a benzamide-based zinc-binding group to visualize these enzymes in brain tumours by positron emission tomography (PET). BA3, exhibiting high inhibitory potency for HDAC1 (IC50 = 4.8 nM) and HDAC2 (IC50 = 39.9 nM), and specificity towards HDAC3 and HDAC6 (specificity ratios >230 and >2080, respectively), was selected for radiofluorination. The two-step one-pot radiosynthesis of [18F]BA3 was performed in a TRACERlab FX2 N radiosynthesizer by a nucleophilic aliphatic substitution reaction. The automated radiosynthesis of [18F]BA3 resulted in a radiochemical yield of 1%, a radiochemical purity of >96% and a molar activity between 21 and 51 GBq/µmol (n = 5, EOS). For the characterization of BA3, in vitro and in vivo experiments were carried out. The results of these pharmacological and pharmacokinetic studies indicate a suitable inhibitory potency of BA3, whereas the applicability for non-invasive imaging of HDAC1/2 by PET requires further optimization of the properties of this compound.

11.
J Labelled Comp Radiopharm ; 65(6): 162-166, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35288969

RESUMO

[18 F]FLUDA is a selective radiotracer for in vivo imaging of the adenosine A2A receptor (A2A R) by positron emission tomography (PET). Promising preclinical results obtained by neuroimaging of mice and piglets suggest the translation of [18 F]FLUDA to human PET studies. Thus, we report herein a remotely controlled automated radiosynthesis of [18 F]FLUDA using a GE TRACERlab FX2 N radiosynthesizer. The radiotracer was obtained by a one-pot two-step radiofluorination procedure with a radiochemical yield of 9±1%, a radiochemical purity of ≥99%, and molar activities in the range of 69-333 GBq/µmol at the end of synthesis within a total synthesis time of approx. 95 min (n = 16). Altogether, we successfully established a reliable and reproducible procedure for the automated production of [18 F]FLUDA.


Assuntos
Adenosina , Receptor A2A de Adenosina , Animais , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons/métodos , Radioquímica/métodos , Compostos Radiofarmacêuticos , Suínos
12.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35215275

RESUMO

The use of radiolabeled non-natural amino acids can provide high contrast SPECT/PET metabolic imaging of solid tumors. Among them, radiohalogenated tyrosine analogs (i.e., [123I]IMT, [18F]FET, [18F]FDOPA, [123I]8-iodo-L-TIC(OH), etc.) are of particular interest. While radioiodinated derivatives, such as [123I]IMT, are easily available via electrophilic aromatic substitutions, the production of radiofluorinated aryl tyrosine analogs was a long-standing challenge for radiochemists before the development of innovative radiofluorination processes using arylboronate, arylstannane or iodoniums salts as precursors. Surprisingly, despite these methodological advances, no radiofluorinated analogs have been reported for [123I]8-iodo-L-TIC(OH), a very promising radiotracer for SPECT imaging of prostatic tumors. This work describes a convenient synthetic pathway to obtain new radioiodinated and radiofluorinated derivatives of TIC(OH), as well as their non-radiolabeled counterparts. Using organotin compounds as key intermediates, [125I]5-iodo-L-TIC(OH), [125I]6-iodo-L-TIC(OH) and [125I]8-iodo-L-TIC(OH) were efficiently prepared with good radiochemical yield (RCY, 51-78%), high radiochemical purity (RCP, >98%), molar activity (Am, >1.5-2.9 GBq/µmol) and enantiomeric excess (e.e. >99%). The corresponding [18F]fluoro-L-TIC(OH) derivatives were also successfully obtained by radiofluorination of the organotin precursors in the presence of tetrakis(pyridine)copper(II) triflate and nucleophilic [18F]F- with 19-28% RCY d.c., high RCP (>98.9%), Am (20-107 GBq/µmol) and e.e. (>99%).

13.
Pharmaceuticals (Basel) ; 14(5)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069548

RESUMO

The G protein-coupled adenosine A2B receptor is suggested to be involved in various pathological processes accompanied by increased levels of adenosine as found in inflammation, hypoxia, and cancer. Therefore, the adenosine A2B receptor is currently in focus as a novel target for cancer therapy as well as for noninvasive molecular imaging via positron emission tomography (PET). Aiming at the development of a radiotracer labeled with the PET radionuclide fluorine-18 for imaging the adenosine A2B receptor in brain tumors, one of the most potent and selective antagonists, the xanthine derivative PSB-603, was selected as a lead compound. As initial biodistribution studies in mice revealed a negligible brain uptake of [3H]PSB-603 (SUV3min: 0.2), structural modifications were performed to optimize the physicochemical properties regarding blood-brain barrier penetration. Two novel fluorinated derivatives bearing a 2-fluoropyridine (5) moiety and a 4-fluoro-piperidine (6) moiety were synthesized, and their affinity towards the four adenosine receptor subtypes was determined in competition binding assays. Both compounds showed high affinity towards the adenosine A2B receptor (Ki (5) = 9.97 ± 0.86 nM; Ki (6) = 12.3 ± 3.6 nM) with moderate selectivity versus the other adenosine receptor subtypes.

14.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917199

RESUMO

Cyclic nucleotide phosphodiesterases (PDEs) represent one of the key targets in the research field of intracellular signaling related to the second messenger molecules cyclic adenosine monophosphate (cAMP) and/or cyclic guanosine monophosphate (cGMP). Hence, non-invasive imaging of this enzyme class by positron emission tomography (PET) using appropriate isoform-selective PDE radioligands is gaining importance. This methodology enables the in vivo diagnosis and staging of numerous diseases associated with altered PDE density or activity in the periphery and the central nervous system as well as the translational evaluation of novel PDE inhibitors as therapeutics. In this follow-up review, we summarize the efforts in the development of novel PDE radioligands and highlight (pre-)clinical insights from PET studies using already known PDE radioligands since 2016.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/química , 3',5'-GMP Cíclico Fosfodiesterases/química , Imagem Molecular , Tomografia por Emissão de Pósitrons , Animais , Humanos , Ligantes , Estrutura Molecular , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos
15.
Eur J Nucl Med Mol Imaging ; 48(9): 2727-2736, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33532910

RESUMO

PURPOSE: The adenosine A2A receptor has emerged as a therapeutic target for multiple diseases, and thus the non-invasive imaging of the expression or occupancy of the A2A receptor has potential to contribute to diagnosis and drug development. We aimed at the development of a metabolically stable A2A receptor radiotracer and report herein the preclinical evaluation of [18F]FLUDA, a deuterated isotopologue of [18F]FESCH. METHODS: [18F]FLUDA was synthesized by a two-step one-pot approach and evaluated in vitro by autoradiographic studies as well as in vivo by metabolism and dynamic PET/MRI studies in mice and piglets under baseline and blocking conditions. A single-dose toxicity study was performed in rats. RESULTS: [18F]FLUDA was obtained with a radiochemical yield of 19% and molar activities of 72-180 GBq/µmol. Autoradiography proved A2A receptor-specific accumulation of [18F]FLUDA in the striatum of a mouse and pig brain. In vivo evaluation in mice revealed improved stability of [18F]FLUDA compared to that of [18F]FESCH, resulting in the absence of brain-penetrant radiometabolites. Furthermore, the radiometabolites detected in piglets are expected to have a low tendency for brain penetration. PET/MRI studies confirmed high specific binding of [18F]FLUDA towards striatal A2A receptor with a maximum specific-to-non-specific binding ratio in mice of 8.3. The toxicity study revealed no adverse effects of FLUDA up to 30 µg/kg, ~ 4000-fold the dose applied in human PET studies using [18F]FLUDA. CONCLUSIONS: The new radiotracer [18F]FLUDA is suitable to detect the availability of the A2A receptor in the brain with high target specificity. It is regarded ready for human application.


Assuntos
Tomografia por Emissão de Pósitrons , Receptor A2A de Adenosina , Adenosina , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Flúor , Camundongos , Compostos Radiofarmacêuticos , Ratos , Receptor A2A de Adenosina/metabolismo , Suínos
16.
Int J Mol Sci ; 22(4)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562048

RESUMO

The expression of monocarboxylate transporters (MCTs) is linked to pathophysiological changes in diseases, including cancer, such that MCTs could potentially serve as diagnostic markers or therapeutic targets. We recently developed [18F]FACH as a radiotracer for non-invasive molecular imaging of MCTs by positron emission tomography (PET). The aim of this study was to evaluate further the specificity, metabolic stability, and pharmacokinetics of [18F]FACH in healthy mice and piglets. We measured the [18F]FACH plasma protein binding fractions in mice and piglets and the specific binding in cryosections of murine kidney and lung. The biodistribution of [18F]FACH was evaluated by tissue sampling ex vivo and by dynamic PET/MRI in vivo, with and without pre-treatment by the MCT inhibitor α-CCA-Na or the reference compound, FACH-Na. Additionally, we performed compartmental modelling of the PET signal in kidney cortex and liver. Saturation binding studies in kidney cortex cryosections indicated a KD of 118 ± 12 nM and Bmax of 6.0 pmol/mg wet weight. The specificity of [18F]FACH uptake in the kidney cortex was confirmed in vivo by reductions in AUC0-60min after pre-treatment with α-CCA-Na in mice (-47%) and in piglets (-66%). [18F]FACH was metabolically stable in mouse, but polar radio-metabolites were present in plasma and tissues of piglets. The [18F]FACH binding potential (BPND) in the kidney cortex was approximately 1.3 in mice. The MCT1 specificity of [18F]FACH uptake was confirmed by displacement studies in 4T1 cells. [18F]FACH has suitable properties for the detection of the MCTs in kidney, and thus has potential as a molecular imaging tool for MCT-related pathologies, which should next be assessed in relevant disease models.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacologia , Animais , Linhagem Celular Tumoral , Feminino , Radioisótopos de Flúor/química , Vesícula Biliar/metabolismo , Rim/metabolismo , Fígado/metabolismo , Camundongos , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Ratos , Suínos
17.
Molecules ; 25(9)2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357571

RESUMO

Overexpression of monocarboxylate transporters (MCTs) has been shown for a variety of human cancers (e.g., colon, brain, breast, and kidney) and inhibition resulted in intracellular lactate accumulation, acidosis, and cell death. Thus, MCTs are promising targets to investigate tumor cancer metabolism with positron emission tomography (PET). Here, the organ doses (ODs) and the effective dose (ED) of the first 18F-labeled MCT1/MCT4 inhibitor were estimated in juvenile pigs. Whole-body dosimetry was performed in three piglets (age: ~6 weeks, weight: ~13-15 kg). The animals were anesthetized and subjected to sequential hybrid Positron Emission Tomography and Computed Tomography (PET/CT) up to 5 h after an intravenous (iv) injection of 156 ± 54 MBq [18F]FACH. All relevant organs were defined by volumes of interest. Exponential curves were fitted to the time-activity data. Time and mass scales were adapted to the human order of magnitude and the ODs calculated using the ICRP 89 adult male phantom with OLINDA 2.1. The ED was calculated using tissue weighting factors as published in Publication 103 of the International Commission of Radiation Protection (ICRP103). The highest organ dose was received by the urinary bladder (62.6 ± 28.9 µSv/MBq), followed by the gall bladder (50.4 ± 37.5 µSv/MBq) and the pancreas (30.5 ± 27.3 µSv/MBq). The highest contribution to the ED was by the urinary bladder (2.5 ± 1.1 µSv/MBq), followed by the red marrow (1.7 ± 0.3 µSv/MBq) and the stomach (1.3 ± 0.4 µSv/MBq). According to this preclinical analysis, the ED to humans is 12.4 µSv/MBq when applying the ICRP103 tissue weighting factors. Taking into account that preclinical dosimetry underestimates the dose to humans by up to 40%, the conversion factor applied for estimation of the ED to humans would rise to 20.6 µSv/MBq. In this case, the ED to humans upon an iv application of ~300 MBq [18F]FACH would be about 6.2 mSv. This risk assessment encourages the translation of [18F]FACH into clinical study phases and the further investigation of its potential as a clinical tool for cancer imaging with PET.


Assuntos
Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Radiometria/métodos , Compostos Radiofarmacêuticos/farmacologia , Simportadores/antagonistas & inibidores , Distribuição Tecidual/efeitos dos fármacos , Animais , Medula Óssea/efeitos dos fármacos , Radioisótopos de Flúor , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Estômago/efeitos dos fármacos , Suínos , Tomografia Computadorizada por Raios X/métodos , Bexiga Urinária/efeitos dos fármacos
18.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32366046

RESUMO

The adenosine A2B receptor has been proposed as a novel therapeutic target in cancer, as its expression is drastically elevated in several tumors and cancer cells. Noninvasive molecular imaging via positron emission tomography (PET) would allow the in vivo quantification of this receptor in pathological processes and most likely enable the identification and clinical monitoring of respective cancer therapies. On the basis of a bicyclic pyridopyrimidine-2,4-dione core structure, the new adenosine A2B receptor ligand 9 was synthesized, containing a 2-fluoropyridine moiety suitable for labeling with the short-lived PET radionuclide fluorine-18. Compound 9 showed a high binding affinity for the human A2B receptor (Ki(A2B) = 2.51 nM), along with high selectivities versus the A1, A2A, and A3 receptor subtypes. Therefore, it was radiofluorinated via nucleophilic aromatic substitution of the corresponding nitro precursor using [18F]F-/K2.2.2./K2CO3 in DMSO at 120 °C. Metabolic studies of [18F]9 in mice revealed about 60% of radiotracer intact in plasma at 30 minutes p.i. A preliminary PET study in healthy mice showed an overall biodistribution of [18F]9, corresponding to the known ubiquitous but low expression of the A2B receptor. Consequently, [18F]9 represents a novel PET radiotracer with high affinity and selectivity toward the adenosine A2B receptor and a suitable in vivo profile. Subsequent studies are envisaged to investigate the applicability of [18F]9 to detect alterations in the receptor density in certain cancer-related disease models.


Assuntos
Adenosina/química , Radioisótopos de Flúor/química , Tomografia por Emissão de Pósitrons/métodos , Receptor A2B de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/química , Animais , Feminino , Humanos , Camundongos , Estrutura Molecular
19.
Molecules ; 25(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423056

RESUMO

Monocarboxylate transporters 1-4 (MCT1-4) are involved in several metabolism-related diseases, especially cancer, providing the chance to be considered as relevant targets for diagnosis and therapy. [18F]FACH was recently developed and showed very promising preclinical results as a potential positron emission tomography (PET) radiotracer for imaging of MCTs. Given that [18F]FACH did not show high blood-brain barrier permeability, the current work is aimed to investigate whether more lipophilic analogs of FACH could improve brain uptake for imaging of gliomas, while retaining binding to MCTs. The 2-fluoropyridinyl-substituted analogs 1 and 2 were synthesized and their MCT1 inhibition was estimated by [14C]lactate uptake assay on rat brain endothelial-4 (RBE4) cells. While compounds 1 and 2 showed lower MCT1 inhibitory potencies than FACH (IC50 = 11 nM) by factors of 11 and 25, respectively, 1 (IC50 = 118 nM) could still be a suitable PET candidate. Therefore, 1 was selected for radiosynthesis of [18F]1 and subsequent biological evaluation for imaging of the MCT expression in mouse brain. Regarding lipophilicity, the experimental log D7.4 result for [18F]1 agrees pretty well with its predicted value. In vivo and in vitro studies revealed high uptake of the new radiotracer in kidney and other peripheral MCT-expressing organs together with significant reduction by using specific MCT1 inhibitor α-cyano-4-hydroxycinnamic acid. Despite a higher lipophilicity of [18F]1 compared to [18F]FACH, the in vivo brain uptake of [18F]1 was in a similar range, which is reflected by calculated BBB permeabilities as well through similar transport rates by MCTs on RBE4 cells. Further investigation is needed to clarify the MCT-mediated transport mechanism of these radiotracers in brain.


Assuntos
Encéfalo/diagnóstico por imagem , Transportadores de Ácidos Monocarboxílicos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Piridinas/síntese química , Compostos Radiofarmacêuticos/síntese química , Simportadores/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Linhagem Celular , Ácidos Cumáricos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Radioisótopos de Flúor , Ligantes , Camundongos , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Piridinas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Simportadores/antagonistas & inibidores
20.
Molecules ; 25(7)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252340

RESUMO

The adenosine A2A receptor (A2AR) is regarded as a particularly appropriate target for non-dopaminergic treatment of Parkinson's disease (PD). An increased A2AR availability has been found in the human striatum at early stages of PD and in patients with PD and dyskinesias. The aim of this small animal positron emission tomography/magnetic resonance (PET/MR) imaging study was to investigate whether rotenone-treated mice reflect the aspect of striatal A2AR upregulation in PD. For that purpose, we selected the known A2AR-specific radiotracer [18F]FESCH and developed a simplified two-step one-pot radiosynthesis. PET images showed a high uptake of [18F]FESCH in the mouse striatum. Concomitantly, metabolism studies with [18F]FESCH revealed the presence of a brain-penetrant radiometabolite. In rotenone-treated mice, a slightly higher striatal A2AR binding of [18F]FESCH was found. Nonetheless, the correlation between the increased A2AR levels within the proposed PD animal model remains to be further investigated.


Assuntos
Antagonistas do Receptor A2 de Adenosina/administração & dosagem , Encéfalo/metabolismo , Doença de Parkinson/diagnóstico por imagem , Receptor A2A de Adenosina/metabolismo , Rotenona/efeitos adversos , Antagonistas do Receptor A2 de Adenosina/química , Animais , Encéfalo/diagnóstico por imagem , Células CHO , Cricetulus , Modelos Animais de Doenças , Feminino , Radioisótopos de Flúor/química , Masculino , Camundongos , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Tomografia por Emissão de Pósitrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...