Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Chemphyschem ; : e202400118, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742372

RESUMO

In recent decades, two-dimensional (\num{2}D) perovskites have emerged as promising semiconductors for next-generation photovoltaics, showing notable advancements in solar energy conversion. Herein, we explore the impact of alternative inorganic lattice \ce{BX}-based compositions ($\ce{B} = \ce{Ge}$ or \ce{Sn}, $\ce{X} = \ce{Br}$ or \ce{I}) on the energy gap and stability. Our investigation encompasses \ce{BA$_2$MA$_{n-1}$B$_n$X$_{3n+1}$} \num{2}D Ruddlesden-Popper perovskites (for $n = \num{1} - \num{5}$ layers) and \num{3}D bulk \ce{(MA)BX$_3$} systems, employing first-principles calculations with spin-orbit coupling (SOC), DFT-1/2 quasiparticle, and D3 dispersion corrections. The study unveils how atoms with smaller ionic radii induce anisotropic internal and external distortions within the inorganic and organic lattices. Introducing the \ce{BA} spacers in the low-layer regime reduces local distortions but widens band gaps. Our calculation protocol provides deeper insights into the physics and chemistry underlying \num{2}D perovskite materials, paving the way for optimizing environmentally friendly alternatives that can efficiently replace \ce{Pb} with sustainable materials.

2.
Int J Biol Macromol ; 263(Pt 2): 130365, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401590

RESUMO

Hepatitis B virus (HBV) virus-like particles (VLPs) are promising therapeutic agents derived from HBV core proteins (Cp). This study investigates the assembly dynamics of HBV VLPs, which is crucial for their potential as drug carriers or gene delivery systems. Coarse-grained molecular dynamics simulations explore the impact of C-terminal domain length (in the Cp ranging from Cp149 to wild-type Cp183) on Cp assembly and stability, particularly in the presence of DNA. Our findings reveal that the C-terminal nucleic acid binding region significantly influences Cp assembly and stability of trimers comprising Cp dimers. Shorter C-terminal domains (Cp164, Cp167) enhance stability and protein-protein interactions, while interactions between naturally occurring Cp183 are destabilized in the absence of DNA. Interestingly, DNA addition further stabilizes Cp assemblies, and this effect is influenced by the length of the nucleic acid binding region. Shorter C-terminal domains show less dependency on DNA content. This stabilization is attributed to electrostatic forces between positively charged C-terminal chains and negatively charged nucleic acids. Our study sheds light on the molecular mechanisms governing protein-protein and protein-DNA interactions in HBV VLP assembly, providing insights into Cp processability and informing the development of efficient gene therapy carriers using VLP technology.


Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Vírus da Hepatite B/genética , DNA/genética , Simulação de Dinâmica Molecular
3.
ChemSusChem ; 17(10): e202301903, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38266158

RESUMO

The versatile properties of bipolar organic electrode materials have attracted considerable attention in the field of electrochemical energy storage (EES). However, their practical application is hindered by their inherent limitations including low intrinsic electrical conductivity, low specific capacity, and high solubility. Herein, a bipolar organic molecule combining both porphyrin and ferrocene moieties (CuDEFcP) [5,15-bis(ethynyl)-10,20-di ferrocenyl porphinato]copper(II)) has been developed. It is proposed as a new organic electrode material with multifunctional application for rechargeable organic lithium-based batteries (ROLBs) and dual-ion organic symmetric batteries (SDIBs). Superior performance was delivered as cathode material in lithium based dual-ion batteries (LDIBs), with a high initial discharge capacity of 300 mAh. g-1 at 0.2 A. g-1 and a reversible capacity of 58 mAh. g-1 after 5000 cycles at 1 A. g-1. However, employing it as an anode material in lithium-ion batteries (LIBs), a reversible capacity of 295 mAh. g-1 at 0.2 A. g-1 was delivered. In SDIBs, in which CuDEFcP is used as both anode and cathode, an average discharge voltage of 2.4 V and an energy density of 261 Wh.kg-1 were achieved.

4.
Commun Chem ; 6(1): 275, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110545

RESUMO

Materials with photoswitchable electronic properties and conductance values that can be reversibly changed over many orders of magnitude are highly desirable. Metal-organic framework (MOF) films functionalized with photoresponsive spiropyran molecules demonstrated the general possibility to switch the conduction by light with potentially large on-off-ratios. However, the fabrication of MOF materials in a trial-and-error approach is cumbersome and would benefit significantly from in silico molecular design. Based on the previous proof-of-principle investigation, here, we design photoswitchable MOFs which incorporate spiropyran photoswitches at controlled positions with defined intermolecular distances and orientations. Using multiscale modelling and automated workflow protocols, four MOF candidates are characterized and their potential for photoswitching the conductivity is explored. Using ab initio calculations of the electronic coupling between the molecules in the MOF, we show that lattice distances and vibrational flexibility tremendously modulate the possible conduction photoswitching between spiropyran- and merocyanine-based MOFs upon light absorption, resulting in average on-off ratios higher than 530 and 4200 for p- and n-conduction switching, respectively. Further functionalization of the photoswitches with electron-donating/-withdrawing groups is demonstrated to shift the energy levels of the frontier orbitals, permitting a guided design of new spiropyran-based photoswitches towards controlled modification between electron and hole conduction in a MOF.

5.
Sci Data ; 10(1): 581, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669957

RESUMO

HOMO and LUMO energies are critical molecular properties that typically require high accuracy computations for practical applicability. Until now, a comprehensive dataset containing sufficiently accurate HOMO and LUMO energies has been unavailable. In this study, we introduce a new dataset of HOMO/LUMO energies for QM9 compounds, calculated using the GW method. The GW method offers adequate HOMO/LUMO prediction accuracy for diverse applications, exhibiting mean unsigned errors of 100 meV in the GW100 benchmark dataset. This database may serve as a benchmark of HOMO/LUMO prediction, delta-learning, and transfer learning, particularly for larger molecules where GW is the most accurate but still numerically feasible method. We anticipate that this dataset will enable the development of more accurate machine learning models for predicting molecular properties.

6.
J Chem Theory Comput ; 19(13): 3849-3860, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37382923

RESUMO

Small-molecule-based amorphous organic semiconductors (OSCs) are essential components of organic photovoltaics and organic light-emitting diodes. The charge carrier mobility of these materials is an integral and limiting factor in regard to their performance. Integrated computational models for the hole mobility, taking into account structural disorder in systems of several thousand molecules, have been the object of research in the past. Due to static and dynamic contributions to the total structural disorder, efficient strategies to sample the charge transfer parameters become necessary. In this paper, we investigate the impact of structural disorder in amorphous OSCs on the transfer parameters and charge mobilities in different materials. We present a sampling strategy for incorporating static and dynamic structural disorder which are based on QM/MM methods using semiempirical Hamiltonians and extensive MD sampling. We show how the disorder affects the distributions of HOMO energies and intermolecular couplings and validate the results using kinetic Monte Carlo simulations of the mobility. We find that dynamic disorder causes an order of magnitude difference in the calculated mobility between morphologies of the same material. Our method allows the sampling of disorder in HOMO energies and couplings, and the statistical analysis enables us to characterize the relevant time scales on which charge transfer occurs in these complex materials. The findings presented here shed light on the interplay of the fluctuating amorphous matrix with charge carrier transport and aid in the development of a better understanding of these complex processes.

7.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239915

RESUMO

Due to its outstanding properties, graphene has emerged as one of the most promising 2D materials in a large variety of research fields. Among the available fabrication protocols, chemical vapor deposition (CVD) enables the production of high quality single-layered large area graphene. To better understand the kinetics of CVD graphene growth, multiscale modeling approaches are sought after. Although a variety of models have been developed to study the growth mechanism, prior studies are either limited to very small systems, are forced to simplify the model to eliminate the fast process, or they simplify reactions. While it is possible to rationalize these approximations, it is important to note that they have non-trivial consequences on the overall growth of graphene. Therefore, a comprehensive understanding of the kinetics of graphene growth in CVD remains a challenge. Here, we introduce a kinetic Monte Carlo protocol that permits, for the first time, the representation of relevant reactions on the atomic scale, without additional approximations, while still reaching very long time and length scales of the simulation of graphene growth. The quantum-mechanics-based multiscale model, which links kinetic Monte Carlo growth processes with the rates of occurring chemical reactions, calculated from first principles makes it possible to investigate the contributions of the most important species in graphene growth. It permits the proper investigation of the role of carbon and its dimer in the growth process, thus indicating the carbon dimer to be the dominant species. The consideration of hydrogenation and dehydrogenation reactions enables us to correlate the quality of the material grown within the CVD control parameters and to demonstrate an important role of these reactions in the quality of the grown graphene in terms of its surface roughness, hydrogenation sites, and vacancy defects. The model developed is capable of providing additional insights to control the graphene growth mechanism on Cu(111), which may guide further experimental and theoretical developments.


Assuntos
Doenças Cardiovasculares , Grafite , Humanos , Carbono , Simulação por Computador , Gases
8.
Small ; 19(34): e2207593, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37098631

RESUMO

For highly abundant silica nanomaterials, detrimental effects on proteins and phospholipids are postulated as critical molecular initiating events that involve hydrogen-bonding, hydrophobic, and/or hydrophilic interactions. Here, large unilamellar vesicles with various well-defined phospholipid compositions are used as biomimetic models to recapitulate membranolysis, a process known to be induced by silica nanoparticles in human cells. Differential analysis of the dominant phospholipids determined in membranes of alveolar lung epithelial cells demonstrates that the quaternary ammonium head groups of phosphatidylcholine and sphingomyelin play a critical and dose-dependent role in vesicle binding and rupture by amorphous colloidal silica nanoparticles. Surface modification by either protein adsorption or by covalent coupling of carboxyl groups suppresses the disintegration of these lipid vesicles, as well as membranolysis in human A549 lung epithelial cells by the silica nanoparticles. Furthermore, molecular modeling suggests a preferential affinity of silanol groups for choline head groups, which is also modulated by the pH value. Biomimetic lipid vesicles can thus be used to better understand specific phospholipid-nanoparticle interactions at the molecular level to support the rational design of safe advanced materials.


Assuntos
Nanopartículas , Fosfolipídeos , Humanos , Fosfolipídeos/química , Lipossomas Unilamelares , Dióxido de Silício/química , Colina , Fosfatidilcolinas/química , Lecitinas , Nanopartículas/química
9.
Nat Commun ; 14(1): 1356, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36907955

RESUMO

Conductivity doping has emerged as an indispensable method to overcome the inherently low conductivity of amorphous organic semiconductors, which presents a great challenge in organic electronics applications. While tuning ionization potential and electron affinity of dopant and matrix is a common approach to control the doping efficiency, many other effects also play an important role. Here, we show that the quadrupole moment of the dopant anion in conjunction with the mutual near-field host-dopant orientation have a crucial impact on the conductivity. In particular, a large positive quadrupole moment of a dopant leads to an overscreening in host-dopant integer charge transfer complexes. Exploitation of this effect may enhance the conductivity by several orders of magnitude. This finding paves the way to a computer-aided systematic and efficient design of highly conducting amorphous small molecule doped organic semiconductors.

10.
J Chem Theory Comput ; 19(3): 910-923, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36645752

RESUMO

Coarse grained (CG) molecular dynamics simulations are widely used to accelerate atomistic simulations but generally lack a formalism to preserve the dynamics of the system. For spherical particles, the Mori-Zwanzig approach, while computationally complex, has ameliorated this problem. Here we present an anisotropic dissipative particle dynamics (ADPD) model as an extension of this approach, which accounts for the anisotropy for both conservative and nonconservative interactions. For a simple anisotropic system we parametrize the coarse grained force field representing ellipsoidal CG particles from the full-atomistic simulation. To represent the anisotropy of the system, both the conservative and dissipative terms are approximated using the Gay-Berne (GB) functional forms via a force-matching approach. We compare our model with other CG models and demonstrate that it yields better results in both static and dynamical properties. The inclusion of the anisotropic nonconservative force preserves the microscopic dynamical details, and hence the dynamical properties, such as diffusivity, can be better reproduced by the aspherical model. By generalizing the isotropic DPD model, this framework is effective and promising for the development of the CG model for polymers, macromolecules, and biological systems.

11.
J Am Chem Soc ; 145(4): 2461-2472, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656167

RESUMO

A mixed-ligand phthalocyanine/porphyrin yttrium(III) radical double-decker complex (DD) was synthesized using the custom-made 5,10,15-tris(4-methoxyphenyl)-20-(4-((trimethylsilyl)ethynyl)phenyl)porphyrin. The trimethylsilyl functionality was then used to couple two such complexes into biradicals through rigid tethers. Glaser coupling was used to synthesize a short-tethered biradical (C1) and Sonogashira coupling to synthesize longer-tethered ones (C2 and C3). Field-swept echo-detected (FSED), saturation recovery, and spin nutation-pulsed electron paramagnetic resonance experiments revealed marked similarities of the magnetic properties of DD with those of the parent [Y(pc)2]• complex, both in the solid state and in CD2Cl2/CDCl3 4:1 frozen glasses. FSED experiments on the biradicals C2 and C3 revealed a spectral broadening with respect to the spectra of DD and [Y(pc)2]• assigned to the effect of dipolar interactions in solution. Apart from the main resonance, satellite features were also observed, which were simulated with dipole-dipole pairs of shortest distances, suggesting spin delocalization on the organic tether. FSED experiments on C1 yielded spectral line shapes that could not be simulated as the integration of the off-resonance echoes was complicated by field-dependent modulations. While, for all dimers, the on-resonance spin nutation experiments yielded Rabi oscillations of the same frequencies, off-resonance nutations on C1 yielded Rabi oscillations that could be assigned to a MS = -1 to MS = 0 transition within a S = 1 multiplet. The DFT calculations showed that the trans conformation of the complexes was significantly more stable than the cis one and that it induced a marked spin delocalization over the rigid organic tether. This "spin leakage" was most pronounced for the shortest biradical C1.

12.
Biophys J ; 122(11): 2125-2146, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-36523158

RESUMO

The twin arginine translocase (Tat) exports folded proteins across bacterial membranes. The putative pore-forming or membrane-weakening component (TatAd in B. subtilis) is anchored to the lipid bilayer via an unusually short transmembrane α-helix (TMH), with less than 16 residues. Its tilt angle in different membranes was analyzed under hydrophobic mismatch conditions, using synchrotron radiation circular dichroism and solid-state NMR. Positive mismatch (introduced either by reconstitution in short-chain lipids or by extending the hydrophobic TMH length) increased the helix tilt of the TMH as expected. Negative mismatch (introduced either by reconstitution in long-chain lipids or by shortening the TMH), on the other hand, led to protein aggregation. These data suggest that the TMH of TatA is just about long enough for stable membrane insertion. At the same time, its short length is a crucial factor for successful translocation, as demonstrated here in native membrane vesicles using an in vitro translocation assay. Furthermore, when reconstituted in model membranes with negative spontaneous curvature, the TMH was found to be aligned parallel to the membrane surface. This intrinsic ability of TatA to flip out of the membrane core thus seems to play a key role in its membrane-destabilizing effect during Tat-dependent translocation.


Assuntos
Proteínas de Escherichia coli , Proteínas de Membrana Transportadoras , Proteínas de Membrana Transportadoras/química , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética , Proteínas de Escherichia coli/metabolismo
13.
Angew Chem Int Ed Engl ; 62(10): e202217377, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36515401

RESUMO

While materials based on organic molecules usually have either superior optoelectronic or superior chiral properties, the combination of both is scarce. Here, a crystalline chiroptical film based on porphyrin with homochiral side groups is presented. While the dissolved molecule has a planar, thus, achiral porphyrin core, upon assembly in a metal-organic framework (MOF) film, the porphyrin core is twisted and chiral. The close packing and the crystalline order of the porphyrin cores in the MOF film also results in excellent optoelectronic properties. By exciting the Soret band of porphyrin, efficient photoconduction with a high On-Off-ratio is realized. More important, handedness-dependent circularly-polarized-light photoconduction with a dissymmetry factor g of 4.3×10-4 is obtained. We foresee the combination of such assembly-induced chirality with the rich porphyrin chemistry will enable a plethora of organic materials with exceptional chiral and optoelectronic properties.

14.
Angew Chem Int Ed Engl ; 62(2): e202212339, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36269169

RESUMO

Multivalent batteries show promising prospects for next-generation sustainable energy storage applications. Herein, we report a polytriphenylamine (PTPAn) composite cathode capable of highly reversible storage of tetrakis(hexafluoroisopropyloxy) borate [B(hfip)4 ] anions in both Magnesium (Mg) and calcium (Ca) battery systems. Spectroscopic and computational studies reveal the redox reaction mechanism of the PTPAn cathode material. The Mg and Ca cells exhibit a cell voltage >3 V, a high-power density of ∼∼3000 W kg-1 and a high-energy density of ∼∼300 Wh kg-1 , respectively. Moreover, the combination of the PTPAn cathode with a calcium-tin (Ca-Sn) alloy anode could enable a long battery-life of 3000 cycles with a capacity retention of 60 %. The anion storage chemistry associated with dual-ion electrochemical concept demonstrates a new feasible pathway towards high-performance divalent ion batteries.

15.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36499027

RESUMO

Macromolecular self-assembly is at the basis of many phenomena in material and life sciences that find diverse applications in technology. One example is the formation of virus-like particles (VLPs) that act as stable empty capsids used for drug delivery or vaccine fabrication. Similarly to the capsid of a virus, VLPs are protein assemblies, but their structural formation, stability, and properties are not fully understood, especially as a function of the protein modifications. In this work, we present a data-driven modeling approach for capturing macromolecular self-assembly on scales beyond traditional molecular dynamics (MD), while preserving the chemical specificity. Each macromolecule is abstracted as an anisotropic object and high-dimensional models are formulated to describe interactions between molecules and with the solvent. For this, data-driven protein-protein interaction potentials are derived using a Kriging-based strategy, built on high-throughput MD simulations. Semi-automatic supervised learning is employed in a high performance computing environment and the resulting specialized force-fields enable a significant speed-up to the micrometer and millisecond scale, while maintaining high intermolecular detail. The reported generic framework is applied for the first time to capture the formation of hepatitis B VLPs from the smallest building unit, i.e., the dimer of the core protein HBcAg. Assembly pathways and kinetics are analyzed and compared to the available experimental observations. We demonstrate that VLP self-assembly phenomena and dependencies are now possible to be simulated. The method developed can be used for the parameterization of other macromolecules, enabling a molecular understanding of processes impossible to be attained with other theoretical models.


Assuntos
Partículas Artificiais Semelhantes a Vírus , Vírus da Hepatite B , Substâncias Macromoleculares , Capsídeo/química , Proteínas do Capsídeo/química , Antígenos do Núcleo do Vírus da Hepatite B , Substâncias Macromoleculares/química , Partículas Artificiais Semelhantes a Vírus/química
16.
Colloids Surf B Biointerfaces ; 218: 112759, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36027680

RESUMO

The understanding of interactions between proteins with silica surface is crucial for a wide range of different applications: from medical devices, drug delivery and bioelectronics to biotechnology and downstream processing. We show the application of EISM (Effective Implicit Surface Model) for discovering the set of peptide interactions with silica surface. The EISM is employed for a high-speed computational screening of peptides to model the binding affinity of small peptides to silica surfaces. The simulations are complemented with experimental data of peptides with silica nanoparticles from microscale thermophoresis and from infrared spectroscopy. The experimental work shows excellent agreement with computational results and verifies the EISM model for the prediction of peptide-surface interactions. 57 peptides, with amino acids favorable for adsorption on Silica surface, are screened by EISM model for obtaining results, which are worth to be considered as a guidance for future experimental and theoretical works. This model can be used as a broad platform for multiple challenges at surfaces which can be applied for multiple surfaces and biomolecules beyond silica and peptides.


Assuntos
Peptídeos , Dióxido de Silício , Adsorção , Aminoácidos , Simulação por Computador , Peptídeos/química , Dióxido de Silício/química , Propriedades de Superfície
17.
Small ; 18(39): e2200602, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36002338

RESUMO

Ionic liquids (ILs) in nanoporous confinement are the core of many supercapacitors and batteries, where the mobility of the nanoconfined ILs is crucial. Here, by combining experiments based on impedance spectroscopy with molecular dynamics simulations, the mobility of a prototype IL in the nanopores of an isoreticular metal-organic framework (MOF)-series with different pore sizes is explored, where an external electric field is applied. It has been found that the conduction behavior changes tremendously depend on the pore size. For small-pore apertures, the IL cations and anions cannot pass the pore window simultaneously, causing the ions to mutually block the pores. This results in a strong concentration dependence of the ionic conduction, where the conduction drops by two orders of magnitude when filling the pores. For large-pore MOFs, the mutual hindrance of the ions in the pores is small, causing only a small concentration dependence. The cutoff between the large-pore and small-pore behavior is approximately the size of a cation-anion-dimer and increasing the pore diameter by only 0.2 nm changes the conduction behavior fundamentally. This study shows that the pore aperture size has a substantial effect on the mobility of ions in nanoporous confinement and has to be carefully optimized for realizing highly-mobile nanoconfined ILs.

18.
Nat Commun ; 13(1): 2115, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440637

RESUMO

Direct laser writing is an effective technique for fabrication of complex 3D polymer networks using ultrashort laser pulses. Practically, it remains a challenge to design and fabricate high performance materials with different functions that possess a combination of high strength, substantial ductility, and tailored functionality, in particular for small feature sizes. To date, it is difficult to obtain a time-resolved microscopic picture of the printing process in operando. To close this gap, we herewith present a molecular dynamics simulation approach to model direct laser writing and investigate the effect of writing condition and aspect ratio on the mechanical properties of the printed polymer network. We show that writing conditions provide a possibility to tune the mechanical properties and an optimum writing condition can be applied to fabricate structures with improved mechanical properties. We reveal that beyond the writing parameters, aspect ratio plays an important role to tune the stiffness of the printed structures.

19.
Angew Chem Int Ed Engl ; 61(18): e202117144, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35133704

RESUMO

Fully exploiting the potential of enzymes in cell-free biocatalysis requires stabilization of the catalytically active proteins and their integration into efficient reactor systems. Although in recent years initial steps towards the immobilization of such biomolecules in metal-organic frameworks (MOFs) have been taken, these demonstrations have been limited to batch experiments and to aqueous conditions. Here we demonstrate a MOF-based continuous flow enzyme reactor system, with high productivity and stability, which is also suitable for organic solvents. Under aqueous conditions, the stability of the enzyme was increased 30-fold, and the space-time yield exceeded that obtained with other enzyme immobilization strategies by an order of magnitude. Importantly, the infiltration of the proteins into the MOF did not require additional functionalization, thus allowing for time- and cost-efficient fabrication of the biocatalysts using label-free enzymes.


Assuntos
Enzimas Imobilizadas , Estruturas Metalorgânicas , Biocatálise , Catálise , Enzimas/metabolismo , Enzimas Imobilizadas/metabolismo , Estruturas Metalorgânicas/metabolismo , Proteínas/metabolismo , Solventes
20.
Phys Chem Chem Phys ; 24(7): 4576-4587, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35132429

RESUMO

4,4-Bis(carbazol-9-yl)-2,2-biphenyl (CBP) is widely used as a host material in phosphorescent organic light-emitting diodes (PhOLEDs). In the present study, we simulate the absorption spectra of CBP in gas and condensed phases, respectively, using the efficient time-dependent long-range corrected tight-binding density functional theory (TD-LC-DFTB). The accuracy of the condensed-phase absorption spectra computed using the structures obtained from classical molecular dynamics (MD) and quantum mechanical/molecular mechanical (QM/MM) simulations is examined by comparison with the experimental absorption spectrum. It is found that the TD-LC-DFTB gas-phase spectrum is in good agreement with the GW-BSE spectrum, indicating TD-LC-DFTB is an accurate and robust method in calculating the excitation energies of CBP. For the condensed-phase spectrum, we find that the electrostatic embedding has a minor influence on the excitation energy. Computing accurate absorption spectra is a particular challenge since static and dynamic disorders have to be taken into account. The static disorder results from the molecular packing in the material, which leads to molecule deformations. Since these structural changes sensitively impact the excitation energies of the individual molecules, a proper representation of this static disorder indicates that a reasonable structural model of the material has been generated. The good agreement between computed and experimental absorption spectra is therefore an indicator for the structural model developed. Concerning dynamic disorder, we find that molecular changes occur on long timescales in the ns-regime, which requires the use of fast computation approaches to reach convergence. The structural models derived in this work are the basis for future studies of charge and exciton transfer in CBP and related materials, also concerning the degradation mechanisms of CBP-based PhOLEDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...