Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Virol ; 2024: 2197725, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139708

RESUMO

Potato virus Y (PVY) is a highly diverse and genetically variable virus with various strains. Differential evolutionary routes have been reported in the genus Potyvirus, caused by natural selection pressure, mutation, and recombination, with their virulence being dependent on different environmental conditions. Despite its significance and economic impact on Solanaceous species, the understanding of PVY's phylogeography in Kenya remains limited and inadequately documented. The study centers on the molecular characterization of a Kenyan PVY isolate, GenBank accession number PP069009. In-depth phylogenetic analysis unveiled a strong evolutionary association between the Kenyan isolate and isolate [JQ924287] from the United States of America, supported by a robust 92% probability. Recombinant analyses exposed a mosaic-like genetic architecture within the Kenyan isolate, indicating multiple gene recombination events. Selection pressure scrutiny identified specific sites under selective pressure, with evidence of positive/diversifying and negative/purifying selection. Population genetics analysis revealed a calculated nucleotide diversity (π) of 0.00354881, while analysis of molecular variance (AMOVA) unveiled a structured genetic landscape with an øST value of 0.45224. The extensive haplotype network depicted the possibility of diverse PVY strains occurring across continents. This analysis provides valuable insights into the genetic diversity and distribution of PVY globally, highlighting the importance of understanding evolutionary dynamics for effective management and control strategies of PVY on a global scale.

2.
Food Energy Secur ; 12(1): e377, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37035023

RESUMO

Previously, we developed and applied a glasshouse screen for potato tuber yield under heat stress and identified a candidate gene (HSc70) for heat tolerance by genetic analysis of a diploid potato population. Specific allelic variants were expressed at high levels on exposure to moderately elevated temperature due to variations in gene promoter sequence. In this study, we aimed to confirm the results from the glasshouse screen in field trials conducted over several seasons and locations including those in Kenya, Malawi and the UK. We extend our understanding of the HSc70 gene and demonstrate that expression level of HSc70 correlates with tolerance to heat stress in a wide range of wild potato relatives. The physiological basis of the protective effect of HSc70 was explored and we show that genotypes carrying the highly expressed HSc70 A2 allele are protected against photooxidative damage to PSII induced by abiotic stresses. Overall, we show the potential of HSc70 alleles for breeding resilient potato genotypes for multiple environments.

3.
Virus Res ; 277: 197837, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31836513

RESUMO

The complete genome sequences for two variant isolates of groundnut rosette assistor virus (GRAV) have been determined from symptomatic groundnut plants in western Kenya. The sequences of the two GRAV isolates (sc7.1 and sc7.2) are 84.2% identical at the nucleotide level and 98.5% identical at the coat protein level. The variants sc7.1 and sc7.2 comprise 5850 and 5879 nucleotides respectively, and show similar genome organizations with 7 predicted ORFs (P0, P1, P2, P3a, P3 (coat protein, CP), P4 (movement protein, MP) and P5 (coat protein-readthrough protein, CP-RT). Currently, GRAV is an unassigned virus in the Luteoviridae family, due to the fact that only the sequence of the coat protein was previously obtained. The presence of both ORF0 and ORF 4 within the genome sequence determined in the current work suggest that GRAV should be classified as a member of the genus Polerovirus.


Assuntos
Arachis/virologia , Genoma Viral , Luteoviridae/classificação , Filogenia , Doenças das Plantas/virologia , Luteoviridae/isolamento & purificação , Análise de Sequência de RNA
4.
Nucleic Acids Res ; 47(2): e9, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30357413

RESUMO

We present a new method, CIDER-Seq (Circular DNA Enrichment sequencing) for the unbiased enrichment and long-read sequencing of viral-sized circular DNA molecules. We used CIDER-Seq to produce single-read full-length virus genomes for the first time. CIDER-Seq combines PCR-free virus enrichment with Single Molecule Real Time sequencing and a new sequence de-concatenation algorithm. We apply our technique to produce >1200 full-length, highly accurate geminivirus genomes from RNAi-transgenic and control plants in a field trial in Kenya. Using CIDER-Seq we can demonstrate for the first time that the expression of antiviral double-stranded RNA (dsRNA) in transgenic plants causes a consistent shift in virus populations towards species sharing low homology to the transgene derived dsRNA. Our method and its application in an economically important crop plant opens new possibilities in periodic virus sequence surveillance and accurate profiling of diverse circular DNA elements.


Assuntos
DNA Circular/química , DNA Viral/química , Geminiviridae/genética , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Plantas Geneticamente Modificadas/virologia , Análise de Sequência de DNA/métodos , Algoritmos , Plantas Geneticamente Modificadas/genética , Interferência de RNA
5.
Genome Announc ; 6(8)2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472342

RESUMO

Five isolates of Rice yellow mottle virus from western Kenya were fully sequenced. One isolate of strain S4lv had been collected in 1966. Two isolates belonged to the emerging strain S4ug recently described in Uganda. Two isolates collected in 2012 are putative recombinants between the S4lv and S4ug strains.

6.
J Environ Sci Health B ; 50(6): 387-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25844859

RESUMO

Carbofuran (2,3-dihydro-2,2-dimethylbenzofuran-7-yl methylcarbamate) has been used within the Nzoia River Basin (NRB), especially in Bunyala Rice Irrigation Schemes, in Kenya for the control of pests. In this study, the capacity of native bacteria to degrade carbofuran in soils from NRB was investigated. A gram positive, rod-shaped bacteria capable of degrading carbofuran was isolated through liquid cultures with carbofuran as the only carbon and nitrogen source. The isolate degraded 98% of 100-µg mL(-1) carbofuran within 10 days with the formation of carbofuran phenol as the only detectable metabolite. The degradation of carbofuran was followed by measuring its residues in liquid cultures using high performance liquid chromatography (HPLC). Physical and morphological characteristics as well as molecular characterization confirmed the bacterial isolate to be a member of Bacillus species. The results indicate that this strain of Bacillus sp. could be considered as Bacillus cereus or Bacillus thuringiensis with a bootstrap value of 100% similar to the 16S rRNA gene sequences. The biodegradation capability of the native strains in this study indicates that they have great potential for application in bioremediation of carbofuran-contaminated soil sites.


Assuntos
Bacillus/metabolismo , Carbofurano/metabolismo , Inseticidas/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Bacillus/genética , Biodegradação Ambiental , Carbofurano/química , Monitoramento Ambiental , Inseticidas/química , Quênia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Rios , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA