Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-898691

RESUMO

Several factors, including genetic and environmental insults, impede protein folding and secretion in the endoplasmic reticulum (ER). Accumulation of unfolded or mis-folded protein in the ER manifests as ER stress. To cope with this morbid condition of the ER, recent data has suggested that the intracellular event of an unfolded protein response plays a critical role in managing the secretory load and maintaining proteostasis in the ER. Tauroursodeoxycholic acid (TUDCA) is a chemical chaperone and hydrophilic bile acid that is known to inhibit apoptosis by attenuating ER stress. Numerous studies have revealed that TUDCA affects hepatic diseases, obesity, and inflammatory illnesses. Recently, molecular regulation of ER stress in tooth development, especially during the secretory stage, has been studied. Therefore, in this study, we examined the developmental role of ER stress regulation in tooth morphogenesis using in vitro organ cultivation methods with a chemical chaperone treatment, TUDCA. Altered cellular events including proliferation, apoptosis, and dentinogenesis were examined using immunostaining and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. In addition, altered localization patterns of the formation of hard tissue matrices related to molecules, including amelogenin and nestin, were examined to assess their morphological changes. Based on our findings, modulating the role of the chemical chaperone TUDCA in tooth morphogenesis, especially through the modulation of cellular proliferation and apoptosis, could be applied as a supporting data for tooth regeneration for future studies.

2.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-890987

RESUMO

Several factors, including genetic and environmental insults, impede protein folding and secretion in the endoplasmic reticulum (ER). Accumulation of unfolded or mis-folded protein in the ER manifests as ER stress. To cope with this morbid condition of the ER, recent data has suggested that the intracellular event of an unfolded protein response plays a critical role in managing the secretory load and maintaining proteostasis in the ER. Tauroursodeoxycholic acid (TUDCA) is a chemical chaperone and hydrophilic bile acid that is known to inhibit apoptosis by attenuating ER stress. Numerous studies have revealed that TUDCA affects hepatic diseases, obesity, and inflammatory illnesses. Recently, molecular regulation of ER stress in tooth development, especially during the secretory stage, has been studied. Therefore, in this study, we examined the developmental role of ER stress regulation in tooth morphogenesis using in vitro organ cultivation methods with a chemical chaperone treatment, TUDCA. Altered cellular events including proliferation, apoptosis, and dentinogenesis were examined using immunostaining and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. In addition, altered localization patterns of the formation of hard tissue matrices related to molecules, including amelogenin and nestin, were examined to assess their morphological changes. Based on our findings, modulating the role of the chemical chaperone TUDCA in tooth morphogenesis, especially through the modulation of cellular proliferation and apoptosis, could be applied as a supporting data for tooth regeneration for future studies.

3.
Artigo | WPRIM (Pacífico Ocidental) | ID: wpr-835485

RESUMO

Enamel knot (EK)—a signaling center—refers to a transient morphological structure comprising epithelial tissue. EK is believed to regulate tooth development in early organogenesis without its own cellular alterations, including proliferation and differentiation. EKs show a very simple but conserved structure and share functions with teeth of recently evolved vertebrates, suggesting conserved signaling in certain organs, such as functional teeth, through the course of evolution. In this study, we examined the expression patterns of key EK-specific genes including Dusp26 , Fat4, Meis2, Sln , and Zpld1 during mice embryogenesis. Expression patterns of these genes may reveal putative differentiation mechanisms underlying tooth morphogenesis.

4.
Anatomy & Cell Biology ; : 274-283, 2011.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-24641

RESUMO

In rodents, the circumvallate papilla (CVP), with its underlying minor salivary gland, the von Ebners' gland (VEG), is located on the dorsal surface of the posterior tongue. Detailed morphological processes to form the proper structure of CVP and VEG have not been properly elucidated. In particular, the specific localization patterns of taste buds in CVP and the branching formation of VEG have not yet been elucidated. To understand the developmental mechanisms underlying CVP and VEG formation, detailed histological observations of CVP and VEG were examined using a three-dimensional computer-aided reconstruction method with serial histological sections and pan-Cytokeratins immunostainings. In addition, to define the developmental processes in CVP and VEG formation, we examined nerve innervations and cell proliferation using microinjections of AM1-43 and immunostainings with various markers, including phosphoinositide 3-kinase, Ki-67, PGP9.5, and Ulex europaeus agglutinin 1 (UEA1). Results revealed specific morphogenesis of CVP and VEG with nerve innervations patterns, evaluated by the coincided localization patterns of AM1-43 and UEA1. Based on these morphological and immunohistochemical results, we suggest that nerve innervations and cell proliferations play important roles in the positioning of taste buds in CVP and branching morphogenesis of VEG in tongue development.


Assuntos
Animais , Camundongos , Proliferação de Células , Microinjeções , Morfogênese , Roedores , Glândulas Salivares Menores , Papilas Gustativas , Língua , Ulex , Glândulas de von Ebner
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...