Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 203: 111798, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34333015

RESUMO

In this study, the stomatal ozone (O3) fluxes were investigated at five low-elevation forest sites in Western Germany (Rhineland Palatinate) over the time period 1998-2019. The Phytotoxic Ozone Dose with an hourly threshold of uptake (Y), to represent the detoxification capacity of trees (POD1 in mmol m-2 per leaf area, with Y = 1 nmol O3 m-2 s-1), and the number of exceedances of the O3 critical level of 5.2 mmol O3 m-2 per leaf area for European beech and 9.2 mmol O3 m-2 per leaf area for Norway spruce were calculated by using the DO3SE model. A Principal Component Analysis revealed strong correlations between daily O3 concentrations, daytime O3 (for hours with global radiation exceeding 50 W m-2), POD1, global radiation, vapor pressure deficit and air temperature. Moreover, a significant correlation was obtained between POD1 and soil water content (SWC) at all sites (r = 0.51-0.74). The Random Forests Analysis confirmed that the SWC is the most important predictor of stomatal O3 fluxes. The soil water supply is very important for POD1 estimation, because drought decreases stomatal conductance, leading to a reduction of transpiration, as well as to lower O3 uptake through stomata. Between 1998 and 2019, the drier and warmer climate induced a soil drought (on average, SWC - 0.15 % per year) leading to lower stomatal O3 uptake by forests (- 0.36 mmol O3 m-2 per year). Hence, during growing seasons with sufficient water supply and often lower O3 levels compared to hot and dry periods, forests are at higher O3 risk than during hot and dry periods when the drought stress is more significant than O3 stress despite relatively higher O3 levels. Irrespective of these differences in O3 uptake between relatively cool and humid as compared to relatively hot and dry years in the study region, the Critical Level for O3 was exceeded in late spring/early summer (May/June) during all 22 years. Risk assessment for the protection of European forests, which is urgently needed due to the forests current critical state after several successive years of drought and exceedance of the O3 critical level in large areas of Europe, should therefore become flux-based to account for the inter-twined effects of drought and O3 on the physiology and health of forest trees in the region. For stomatal O3 fluxes estimation, a better soil water and leaf parameterization is needed e.g., by taking into account both O3- and drought-induced effects.


Assuntos
Poluentes Atmosféricos , Ozônio , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Ozônio/análise , Folhas de Planta , Estações do Ano , Fatores de Tempo
2.
Tree Physiol ; 41(1): 50-62, 2021 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-32879961

RESUMO

The carbon and oxygen isotopic composition of water and assimilates in plants reveals valuable information on plant responses to climatic conditions. Yet, the carbon and oxygen uptake, incorporation and allocation processes determining isotopic compositions are not fully understood. We carried out a dual-isotope labeling experiment at high humidity with 18O-enriched water (H218O) and 13C-enriched CO2 (13CO2) with attached Scots pine (Pinus sylvestris L.) branches and detached twigs of hemiparasitic mistletoes (Viscum album ssp. austriacum) in a naturally dry coniferous forest, where also a long-term irrigation takes place. After 4 h of label exposure, we sampled previous- and recent-year leaves, twig phloem and twig xylem over 192 h for the analysis of isotope ratios in water and assimilates. For both species, the uptake into leaf water and the incorporation of the 18O-label into leaf assimilates was not influenced by soil moisture, while the 13C-label incorporation into assimilates was significantly higher under irrigation compared with control dry conditions. Species-specific differences in leaf morphology or needle age did not affect 18O-label uptake into leaf water, but the incorporation of both tracers into assimilates was two times lower in mistletoe than in pine. The 18O-label allocation in water from pine needles to twig tissues was two times higher for phloem than for xylem under both soil moisture conditions. In contrast, the allocation of both tracers in pine assimilates were similar and not affected by soil moisture, twig tissue or needle age. Soil moisture effects on 13C-label but not on 18O-label incorporation into assimilates can be explained by the stomatal responses at high humidity, non-stomatal pathways for water and isotope exchange reactions. Our results suggest that non-photosynthetic 18O-incorporation processes may have masked prevalent photosynthetic processes. Thus, isotopic variation in leaf water could also be imprinted on assimilates when photosynthetic assimilation rates are low.


Assuntos
Carbono , Traqueófitas , Isótopos de Carbono/análise , Florestas , Isótopos de Oxigênio/análise , Folhas de Planta/química , Solo , Água
3.
Proc Natl Acad Sci U S A ; 117(40): 24885-24892, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958662

RESUMO

Drought alters carbon (C) allocation within trees, thereby impairing tree growth. Recovery of root and leaf functioning and prioritized C supply to sink tissues after drought may compensate for drought-induced reduction of assimilation and growth. It remains unclear if C allocation to sink tissues during and following drought is controlled by altered sink metabolic activities or by the availability of new assimilates. Understanding such mechanisms is required to predict forests' resilience to a changing climate. We investigated the impact of drought and drought release on C allocation in a 100-y-old Scots pine forest. We applied 13CO2 pulse labeling to naturally dry control and long-term irrigated trees and tracked the fate of the label in above- and belowground C pools and fluxes. Allocation of new assimilates belowground was ca. 53% lower under nonirrigated conditions. A short rainfall event, which led to a temporary increase in the soil water content (SWC) in the topsoil, strongly increased the amounts of C transported belowground in the nonirrigated plots to values comparable to those in the irrigated plots. This switch in allocation patterns was congruent with a tipping point at around 15% SWC in the response of the respiratory activity of soil microbes. These results indicate that the metabolic sink activity in the rhizosphere and its modulation by soil moisture can drive C allocation within adult trees and ecosystems. Even a subtle increase in soil moisture can lead to a rapid recovery of belowground functions that in turn affects the direction of C transport in trees.


Assuntos
Carbono/metabolismo , Pinus sylvestris/metabolismo , Solo/química , Árvores/metabolismo , Carbono/análise , Mudança Climática , Secas , Ecossistema , Florestas , Pinus sylvestris/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Rizosfera , Árvores/crescimento & desenvolvimento , Água/análise , Água/metabolismo
4.
Isotopes Environ Health Stud ; 51(4): 553-68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26156050

RESUMO

Novel tree ring parameters - δ(13)C and δ(2)H from methoxyl groups - have been developed to reconstruct palaeoclimate. Tests with δ(13)C and δ(18)O derived from whole wood and cellulose samples, however, indicated differences in the isotopic composition and climate signal, depending on the extracted wood component. We assess this signal dependency by analysing (i) δ(13)C and δ(18)O from whole wood and cellulose and (ii) δ(13)C and δ(2)H from methoxyl groups, using Pinus sylvestris L. growing near Altenkirchen (Germany). Results indicate significant correlations among the time series derived from whole wood, cellulose, and lignin methoxyl groups. Compared with the whole wood samples, δ(13)C from methoxyl groups showed a different and overall lower response to climate parameters. On the other hand, δ(2)H from methoxyl groups showed high correlations with temperature and was also correlated with ring width, indicating its potential as a temperature proxy. Isotope time series with the highest correlation with climatic parameter were: (i) whole wood and cellulose δ(13)C with growing season precipitation and summer temperature; (ii) methoxyl groups with spring precipitation; (iii) whole wood and cellulose δ(18)O correlates with annual evapotranspiration and water balance; and (iv) methoxyl group δ(2)H with spring temperatures. These findings reveal that multiple climate elements can be reconstructed from different wood components and that whole wood proxies perform comparably to cellulose time series.


Assuntos
Celulose/análise , Isótopos/análise , Lignina/análise , Meteorologia/métodos , Pinus sylvestris/química , Madeira/análise , Isótopos de Carbono/análise , Celulose/química , Deutério/análise , Alemanha , Lignina/química , Isótopos de Oxigênio/análise , Madeira/química
5.
Environ Monit Assess ; 186(8): 4767-78, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24729179

RESUMO

To assess whether nitrogen (N) content and δ(15)N ratios in nitrophytic lichen species (Xanthoria parietina (L.) Th. Fr. (1860) and Physcia spp. (Schreb.) Michaux (1803)) reflect the quantity and quality of atmospheric N loads, 348 lichen samples from 174 sampling grid cells were investigated in the western part of Germany. The analysed lichen N content ranged between 0.98 and 4.28 % and δ(15)N ratios between -15.2 and -1.3 ‰. Based on the N concentrations and the δ(15)N ratios of lichens, different landscape categories and coupled N deposition rates could be inferred for different regions of Germany. By analysing environmental variables like altitude, ammonia emission density, livestock unit and different defined deposition types, a direct relationship was found between lichen chemistry and N compounds produced from agricultural activity. The results support the development of a monitoring method which could be used nationally or even internationally to support current N deposition measurements, by providing reliable information on the quantity and quality of N deposition in high N environments.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Líquens/química , Nitrogênio/análise , Agricultura , Poluição do Ar/estatística & dados numéricos , Amônia/análise , Alemanha , Isótopos de Nitrogênio/análise
6.
Environ Pollut ; 189: 43-53, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24631972

RESUMO

To compare three biomonitoring techniques for assessing nitrogen (N) pollution in Germany, 326 lichen, 153 moss and 187 bark samples were collected from 16 sites of the national N deposition monitoring network. The analysed ranges of N content of all investigated biomonitors (0.32%-4.69%) and the detected δ(15)N values (-15.2‰-1.5‰), made it possible to reveal species specific spatial patterns of N concentrations in biota to indicate atmospheric N deposition in Germany. The comparison with measured and modelled N deposition data shows that particularly lichens are able to reflect the local N deposition originating from agriculture.


Assuntos
Poluentes Atmosféricos/análise , Briófitas/química , Monitoramento Ambiental/métodos , Líquens/química , Nitrogênio/análise , Casca de Planta/química , Agricultura , Alemanha
7.
New Phytol ; 202(3): 772-783, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24602089

RESUMO

For accurate interpretation of oxygen isotopes in tree rings (δ(18) O), it is necessary to disentangle the mechanisms underlying the variations in the tree's internal water cycle and to understand the transfer of source versus leaf water δ(18) O to phloem sugars and stem wood. We studied the seasonal transfer of oxygen isotopes from precipitation and soil water through the xylem, needles and phloem to the tree rings of Larix decidua at two alpine sites in the Lötschental (Switzerland). Weekly resolved δ(18) O records of precipitation, soil water, xylem and needle water, phloem organic matter and tree rings were developed. Week-to-week variations in needle-water (18) O enrichment were strongly controlled by weather conditions during the growing season. These short-term variations were, however, not significantly fingerprinted in tree-ring δ(18) O. Instead, seasonal trends in tree-ring δ(18) O predominantly mirrored trends in the source water, including recent precipitation and soil water pools. Modelling results support these findings: seasonal tree-ring δ(18) O variations are captured best when the week-to-week variations of the leaf water signal are suppressed. Our results suggest that climate signals in tree-ring δ(18) O variations should be strongest at temperate sites with humid conditions and precipitation maxima during the growing season.


Assuntos
Larix/metabolismo , Folhas de Planta/metabolismo , Chuva , Solo/química , Árvores/metabolismo , Água/metabolismo , Calibragem , Umidade , Modelos Biológicos , Isótopos de Oxigênio , Estações do Ano , Suíça , Temperatura , Pressão de Vapor , Xilema/metabolismo
8.
Isotopes Environ Health Stud ; 49(2): 197-218, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23461645

RESUMO

Compared with physico-chemical deposition measurement methods, lichens are able to identify the long-term overall effects of high N pollution concentrations in the air. In addition, the natural abundances of the stable isotope of N, (15)N, are being widely used in research on N cycling in ecosystems. They can also be used as instruments for source attribution. In this study, epiphytic lichens were tested to determine whether their respective N content and δ(15)N ratios can be used to estimate N deposition rates and to locate various sources of N compounds. Epiphytic lichen and bark samples were collected from around various deposition measurement field stations at different sites in the western part of Germany. The N content of epiphytic lichens reflects the species-specific, agriculture-related circumstances of N deposition at various sites in Germany. At the same time, δ(15)N signatures of the different investigated epiphytic lichen species and bark samples are highly depleted in (15)N under high ammonium deposition. The different surface types of lichens and barks exhibit different concentrations of N and δ(15)N ratios, despite being exposed to similar N deposition rates. The verification of highly negative δ(15)N ratios at sites with local and regional emitters shows that source attribution is possible by comparing different δ(15)N signatures in areas with a wide range of different N deposition types and the corresponding differences in δ(15)N among various source N pools. Especially nitrophytic lichens can support the on-site instrumentation measuring N deposition by qualification and quantification.


Assuntos
Agricultura , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Água Doce/química , Líquens/química , Ciclo do Nitrogênio , Nitrogênio/análise , Casca de Planta/química , Mapeamento Geográfico , Alemanha , Isótopos de Nitrogênio/análise
9.
Plant Cell Environ ; 35(7): 1245-57, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22292498

RESUMO

Combined δ(13) C and δ(18) O analyses of water-soluble leaf and twig phloem material were used to determine intrinsic water-use efficiency (iWUE) and variability of stomatal conductance at different crown positions in adult European beech (Fagus sylvatica) and Douglas-fir (Pseudotsuga menziesii) trees. Simultaneous gas exchange measurements allowed evaluation of the differences in calculating iWUE from leaf or phloem water-soluble compounds, and comparison with a semi-quantitative dual isotope model to infer variability of net photosynthesis (A(n) ) between the investigated crown positions. Estimates of iWUE from δ(13) C of leaf water-soluble organic matter (WSOM) outperformed the estimates from phloem compounds. In the beech crown, δ(13) C of leaf WSOM coincided clearly with gas exchange measurements. The relationship was not as reliable in the Douglas-fir. The differences in δ(18) O between leaf and phloem material were found to correlate with stomatal conductance. The semi-quantitative model approach was applicable for comparisons of daily average A(n) between different crown positions and trees. Intracanopy gradients were more pronounced in the beech than in the Douglas-fir, which reached higher values of iWUE at the respective positions, particularly under dry air conditions.


Assuntos
Modelos Biológicos , Floema/fisiologia , Folhas de Planta/fisiologia , Transpiração Vegetal , Isótopos de Carbono/análise , Fagus/fisiologia , Isótopos de Oxigênio/análise , Fotossíntese , Estômatos de Plantas/fisiologia , Pseudotsuga/fisiologia , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...