Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
APL Photonics ; 4(10)2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34926810

RESUMO

We introduce a new form of tomographic imaging that is particularly advantageous for a new class of super-resolution optical imaging methods. Our tomographic method, Fourier Computed Tomography (FCT), operates in a conjugate domain relative to conventional computed tomography techniques. FCT is the first optical tomography method that records complex projections of the object spatial frequency distribution. From these spatial frequency projections, the spatial slice theorem is derived, which is used to build a tomographic imaging reconstruction algorithm. FCT enables enhancement of spatial frequency support along a single spatial direction to be isotropic in the entire transverse spatial frequency domain.

2.
J Opt Soc Am A Opt Image Sci Vis ; 35(8): 1438-1449, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30110281

RESUMO

We derive analytic expressions for the three-dimensional coherent transfer function (CTF) and coherent spread function (CSF) for coherent holographic image reconstruction by phase transfer (CHIRPT) microscopy with monochromatic and broadband illumination sources. The 3D CSF and CTF were used to simulate CHIRPT images, and the results show excellent agreement with experimental data. Finally, we show that the formalism presented here for computing the CSF/CTF pair in CHIRPT microscopy can be readily extended to other forms of single-pixel imaging, such as spatial-frequency-modulated imaging.

3.
Proc Natl Acad Sci U S A ; 113(24): 6605-10, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27231219

RESUMO

Superresolved far-field microscopy has emerged as a powerful tool for investigating the structure of objects with resolution well below the diffraction limit of light. Nearly all superresolution imaging techniques reported to date rely on real energy states of fluorescent molecules to circumvent the diffraction limit, preventing superresolved imaging with contrast mechanisms that occur via virtual energy states, including harmonic generation (HG). We report a superresolution technique based on spatial frequency-modulated imaging (SPIFI) that permits superresolved nonlinear microscopy with any contrast mechanism and with single-pixel detection. We show multimodal superresolved images with two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) from biological and inorganic media. Multiphoton SPIFI (MP-SPIFI) provides spatial resolution up to 2η below the diffraction limit, where η is the highest power of the nonlinear intensity response. MP-SPIFI can be used to provide enhanced resolution in optically thin media and may provide a solution for superresolved imaging deep in scattering media.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/métodos , Modelos Teóricos
4.
Opt Express ; 21(23): 28380-6, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24514347

RESUMO

We report the uninterrupted operation of an 18.9 nm wavelength tabletop soft x-ray laser at 100 Hz repetition rate for extended periods of time. An average power of about 0.1 mW was obtained by irradiating a Mo target with pulses from a compact diode-pumped chirped pulse amplification Yb:YAG laser. Series of up to 1.8 x 10(5) consecutive laser pulses of ~1 µJ energy were generated by displacing the surface of a high shot-capacity rotating molybdenum target by ~2 µm between laser shots. As a proof-of-principle demonstration of the use of this compact ultrashort wavelength laser in applications requiring a high average power coherent beam, we lithographically printed an array of nanometer-scale features using coherent Talbot self-imaging.

5.
Opt Lett ; 37(17): 3624-6, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22940970

RESUMO

We demonstrate the operation of a gain-saturated table-top soft x-ray laser at 100 Hz repetition rate. The laser generates an average power of 0.15 mW at λ=18.9 nm, the highest laser power reported to date from a sub-20-nm wavelength compact source. Picosecond laser pulses of 1.5 µJ energy were produced at λ=18.9 nm by amplification in a Mo plasma created by tailoring the temporal intensity profile of single pump pulses with 1 J energy produced by a diode-pumped chirped pulse amplification Yb:YAG laser. Lasing was also obtained in the 13.9 nm line of Ni-like Ag. These results increase by an order of magnitude the repetition rate of plasma-based soft x-ray lasers opening the path to milliwatt average power table-top lasers at sub-20 nm wavelengths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...