Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Integr Org Biol ; 3(1): obab005, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104873

RESUMO

Humpback and blue whales are large baleen-bearing cetaceans, which use a unique prey-acquisition strategy-lunge feeding-to engulf entire patches of large plankton or schools of forage fish and the water in which they are embedded. Dynamically, and while foraging on krill, lunge-feeding incurs metabolic expenditures estimated at up to 20.0 MJ. Because of prey abundance and its capture in bulk, lunge feeding is carried out at high acquired-to-expended energy ratios of up to 30 at the largest body sizes (∼27 m). We use bio-logging tag data and the work-energy theorem to show that when krill-feeding at depth while using a wide range of prey approach swimming speeds (2-5 m/s), rorquals generate significant and widely varying metabolic power output during engulfment, typically ranging from 10 to 50 times the basal metabolic rate of land mammals. At equal prey field density, such output variations lower their feeding efficiency two- to three-fold at high foraging speeds, thereby allowing slow and smaller rorquals to feed more efficiently than fast and larger rorquals. The analysis also shows how the slowest speeds of harvest so far measured may be connected to the biomechanics of the buccal cavity and the prey's ability to collectively avoid engulfment. Such minimal speeds are important as they generate the most efficient lunges. Sommaire Les rorquals à bosse et rorquals bleus sont des baleines à fanons qui utilisent une technique d'alimentation unique impliquant une approche avec élan pour engouffrer de larges quantités de plancton et bancs de petits poissons, ainsi que la masse d'eau dans laquelle ces proies sont situés. Du point de vue de la dynamique, et durant l'approche et engouffrement de krill, leurs dépenses énergétiques sont estimées jusqu'à 20.0 MJ. À cause de l'abondance de leurs proies et capture en masse, cette technique d'alimentation est effectuée à des rapports d'efficacité énergétique (acquise -versus- dépensée) estimés aux environs de 30 dans le cas des plus grandes baleines (27 m). Nous utilisons les données recueillies par des capteurs de bio-enregistrement ainsi que le théorème reliant l'énergie à l'effort pour démontrer comment les rorquals s'alimentant sur le krill à grandes profondeurs, et à des vitesses variant entre 2 et 5 m/s, maintiennent des taux de dépenses énergétiques entre 10 et 50 fois le taux métabolique basal des mammifères terrestres. À densités de proies égales, ces variations d'énergie utilisée peuvent réduire le rapport d'efficacité énergétique par des facteurs entre 2x et 3x, donc permettant aux petits et plus lents rorquals de chasser avec une efficacité comparable à celle des rorquals les plus grands et rapides. Notre analyse démontre aussi comment des vitesses d'approche plus lentes peuvent être reliées à la biomécanique de leur poche ventrale extensible, et à l'habilitée des proies à éviter d'être engouffrer. Ces minimums de vitesses sont importants car ils permettent une alimentation plus efficace énergétiquement.

2.
J Exp Biol ; 223(Pt 20)2020 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-32820028

RESUMO

Fundamental scaling relationships influence the physiology of vital rates, which in turn shape the ecology and evolution of organisms. For diving mammals, benefits conferred by large body size include reduced transport costs and enhanced breath-holding capacity, thereby increasing overall foraging efficiency. Rorqual whales feed by engulfing a large mass of prey-laden water at high speed and filtering it through baleen plates. However, as engulfment capacity increases with body length (engulfment volume∝body length3.57), the surface area of the baleen filter does not increase proportionally (baleen area∝body length1.82), and thus the filtration time of larger rorquals predictably increases as the baleen surface area must filter a disproportionally large amount of water. We predicted that filtration time should scale with body length to the power of 1.75 (filter time∝body length1.75). We tested this hypothesis on four rorqual species using multi-sensor tags with corresponding unoccupied aircraft systems-based body length estimates. We found that filter time scales with body length to the power of 1.79 (95% CI: 1.61-1.97). This result highlights a scale-dependent trade-off between engulfment capacity and baleen area that creates a biomechanical constraint to foraging through increased filtration time. Consequently, larger whales must target high-density prey patches commensurate to the gulp size to meet their increased energetic demands. If these optimal patches are absent, larger rorquals may experience reduced foraging efficiency compared with smaller whales if they do not match their engulfment capacity to the size of targeted prey aggregations.


Assuntos
Metabolismo Energético , Comportamento Alimentar , Animais , Fenômenos Biomecânicos , Tamanho Corporal , Baleias
3.
Ann Rev Mar Sci ; 9: 367-386, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27620830

RESUMO

Baleen whales are gigantic obligate filter feeders that exploit aggregations of small-bodied prey in littoral, epipelagic, and mesopelagic ecosystems. At the extreme of maximum body size observed among mammals, baleen whales exhibit a unique combination of high overall energetic demands and low mass-specific metabolic rates. As a result, most baleen whale species have evolved filter-feeding mechanisms and foraging strategies that take advantage of seasonally abundant yet patchily and ephemerally distributed prey resources. New methodologies consisting of multi-sensor tags, active acoustic prey mapping, and hydrodynamic modeling have revolutionized our ability to study the physiology and ecology of baleen whale feeding mechanisms. Here, we review the current state of the field by exploring several hypotheses that aim to explain how baleen whales feed. Despite significant advances, major questions remain about the processes that underlie these extreme feeding mechanisms, which enabled the evolution of the largest animals of all time.


Assuntos
Comportamento Alimentar , Baleias , Animais , Tamanho Corporal , Hidrodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...