Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(5)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37239446

RESUMO

CHARGE syndrome typically results from mutations in the gene encoding chromodomain helicase DNA-binding protein 7 (CHD7). CHD7 is involved in regulating neural crest development, which gives rise to tissues of the skull/face and the autonomic nervous system (ANS). Individuals with CHARGE syndrome are frequently born with anomalies requiring multiple surgeries and often experience adverse events post-anesthesia, including oxygen desaturations, decreased respiratory rates, and heart rate abnormalities. Central congenital hypoventilation syndrome (CCHS) affects ANS components that regulate breathing. Its hallmark feature is hypoventilation during sleep, clinically resembling observations in anesthetized CHARGE patients. Loss of PHOX2B (paired-like homeobox 2b) underlies CCHS. Employing a chd7-null zebrafish model, we investigated physiologic responses to anesthesia and compared these to loss of phox2b. Heart rates were lower in chd7 mutants compared to the wild-type. Exposure to tricaine, a zebrafish anesthetic/muscle relaxant, revealed that chd7 mutants took longer to become anesthetized, with higher respiratory rates during recovery. chd7 mutant larvae demonstrated unique phox2ba expression patterns. The knockdown of phox2ba reduced larval heart rates similar to chd7 mutants. chd7 mutant fish are a valuable preclinical model to investigate anesthesia in CHARGE syndrome and reveal a novel functional link between CHARGE syndrome and CCHS.


Assuntos
Síndrome CHARGE , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Síndrome CHARGE/genética , Hipoventilação/genética , Hipoventilação/congênito , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
J Clin Invest ; 133(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37183823

RESUMO

While MYCN expression is an important contributing factor to heterogeneity in the natural history of neuroblastoma (NBL), a mechanistic understanding of this often mutationally quiet tumor has remained elusive. In this issue of the JCI, Weichert-Leahey and authors focused on the adrenergic and mesenchymal core regulatory circuitries (CRC) as NBL transcriptional programs. The authors previously showed that overexpression of LIM-domain-only 1 (LMO1), a transcriptional coregulator, synergizes with MYCN to accelerate tumor formation and metastasis in an NBL-zebrafish model. They now demonstrate experimentally, using genome-edited zebrafish, that a polymorphism in the human rs2168101 locus of the LMO1 gene determines which CRC is active in a tumor. In some cases, LMO3 compensated for LMO1 loss and drove the adrenergic CRC in MYCN-positive NBL. This study exemplifies the value of evolutionary relationships and zebrafish models in the investigation of human disease and reveals pathways of NBL development that may affect prevention or intervention strategies.


Assuntos
Neuroblastoma , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Linhagem Celular Tumoral , Neuroblastoma/patologia , Adrenérgicos , Biologia
3.
Future Oncol ; 17(32): 4371-4387, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34448411

RESUMO

The microbiome consists of all microbes present on and within the human body. An unbalanced, or 'dysbiotic' intestinal microbiome is associated with inflammatory bowel disease, diabetes and some cancer types. Drug treatment can alter the intestinal microbiome composition. Additionally, some chemotherapeutics interact with microbiome components, leading to changes in drug safety and/or efficacy. The intestinal microbiome is a modifiable target, using strategies such as antibiotic treatment, fecal microbial transplantation or probiotic administration. Understanding the impact of the microbiome on the safety and efficacy of cancer treatment may result in improved treatment outcome. The present review seeks to summarize relevant research and look to the future of cancer treatment, where the intestinal microbiome is recognized as an actionable treatment target.


Lay abstract The microbiome describes all of the microorganisms (including bacteria, viruses and fungi) that are normally present on and inside the human body. Some diseases, including cancer, can be caused or worsened by an 'unbalanced' or 'unhealthy' gut microbiome. Some drugs that are given to people who have cancer can change the microbiome. Importantly, components of the gut microbiome can also change how a cancer drug will work in someone. We can change the microbiome in certain ways, like by giving someone antibiotics. Understanding how the microbiome influences the way anticancer drugs work is important because it could help us understand how to make cancer treatment safer and more effective. This review article summarizes available research on the impact of the microbiome on cancer treatment.


Assuntos
Microbioma Gastrointestinal/fisiologia , Neoplasias/etiologia , Antineoplásicos/efeitos adversos , Asparaginase/uso terapêutico , Carcinogênese , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/microbiologia
4.
Elife ; 92020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32720645

RESUMO

Dose-limiting toxicities for cisplatin administration, including ototoxicity and nephrotoxicity, impact the clinical utility of this effective chemotherapy agent and lead to lifelong complications, particularly in pediatric cancer survivors. Using a two-pronged drug screen employing the zebrafish lateral line as an in vivo readout for ototoxicity and kidney cell-based nephrotoxicity assay, we screened 1280 compounds and identified 22 that were both oto- and nephroprotective. Of these, dopamine and L-mimosine, a plant-based amino acid active in the dopamine pathway, were further investigated. Dopamine and L-mimosine protected the hair cells in the zebrafish otic vesicle from cisplatin-induced damage and preserved zebrafish larval glomerular filtration. Importantly, these compounds did not abrogate the cytotoxic effects of cisplatin on human cancer cells. This study provides insights into the mechanisms underlying cisplatin-induced oto- and nephrotoxicity and compelling preclinical evidence for the potential utility of dopamine and L-mimosine in the safer administration of cisplatin.


Assuntos
Cisplatino , Substâncias Protetoras/farmacologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/toxicidade , Dopamina/farmacologia , Combinação de Medicamentos , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/patologia , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Sistema da Linha Lateral/efeitos dos fármacos , Sistema da Linha Lateral/patologia , Mimosina/farmacologia , Modelos Animais , Peixe-Zebra
5.
BMC Plant Biol ; 11(1): 102, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21645374

RESUMO

BACKGROUND: Programmed cell death (PCD) is the regulated death of cells within an organism. The lace plant (Aponogeton madagascariensis) produces perforations in its leaves through PCD. The leaves of the plant consist of a latticework of longitudinal and transverse veins enclosing areoles. PCD occurs in the cells at the center of these areoles and progresses outwards, stopping approximately five cells from the vasculature. The role of mitochondria during PCD has been recognized in animals; however, it has been less studied during PCD in plants. RESULTS: The following paper elucidates the role of mitochondrial dynamics during developmentally regulated PCD in vivo in A. madagascariensis. A single areole within a window stage leaf (PCD is occurring) was divided into three areas based on the progression of PCD; cells that will not undergo PCD (NPCD), cells in early stages of PCD (EPCD), and cells in late stages of PCD (LPCD). Window stage leaves were stained with the mitochondrial dye MitoTracker Red CMXRos and examined. Mitochondrial dynamics were delineated into four categories (M1-M4) based on characteristics including distribution, motility, and membrane potential (ΔΨm). A TUNEL assay showed fragmented nDNA in a gradient over these mitochondrial stages. Chloroplasts and transvacuolar strands were also examined using live cell imaging. The possible importance of mitochondrial permeability transition pore (PTP) formation during PCD was indirectly examined via in vivo cyclosporine A (CsA) treatment. This treatment resulted in lace plant leaves with a significantly lower number of perforations compared to controls, and that displayed mitochondrial dynamics similar to that of non-PCD cells. CONCLUSIONS: Results depicted mitochondrial dynamics in vivo as PCD progresses within the lace plant, and highlight the correlation of this organelle with other organelles during developmental PCD. To the best of our knowledge, this is the first report of mitochondria and chloroplasts moving on transvacuolar strands to form a ring structure surrounding the nucleus during developmental PCD. Also, for the first time, we have shown the feasibility for the use of CsA in a whole plant system. Overall, our findings implicate the mitochondria as playing a critical and early role in developmentally regulated PCD in the lace plant.


Assuntos
Alismataceae/fisiologia , Apoptose/fisiologia , Mitocôndrias/fisiologia , Alismataceae/citologia , Alismataceae/crescimento & desenvolvimento , Diferenciação Celular/fisiologia , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...