Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L372-L389, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35762590

RESUMO

The redox status of the cysteine-rich SARS-CoV-2 spike glycoprotein (SARS-2-S) is important for the binding of SARS-2-S to angiotensin-converting enzyme 2 (ACE2), suggesting that drugs with a functional thiol group ("thiol drugs") may cleave cystines to disrupt SARS-CoV-2 cell entry. In addition, neutrophil-induced oxidative stress is a mechanism of COVID-19 lung injury, and the antioxidant and anti-inflammatory properties of thiol drugs, especially cysteamine, may limit this injury. To first explore the antiviral effects of thiol drugs in COVID-19, we used an ACE-2 binding assay and cell entry assays utilizing reporter pseudoviruses and authentic SARS-CoV-2 viruses. We found that multiple thiol drugs inhibit SARS-2-S binding to ACE2 and virus infection. The most potent drugs were effective in the low millimolar range, and IC50 values followed the order of their cystine cleavage rates and lower thiol pKa values. To determine if thiol drugs have antiviral effects in vivo and to explore any anti-inflammatory effects of thiol drugs in COVID-19, we tested the effects of cysteamine delivered intraperitoneally to hamsters infected with SARS-CoV-2. Cysteamine did not decrease lung viral infection, but it significantly decreased lung neutrophilic inflammation and alveolar hemorrhage. We speculate that the concentration of cysteamine achieved in the lungs with intraperitoneal delivery was insufficient for antiviral effects but sufficient for anti-inflammatory effects. We conclude that thiol drugs decrease SARS-CoV-2 lung inflammation and injury, and we provide rationale for future studies to test if direct (aerosol) delivery of thiol drugs to the airways might also result in antiviral effects.


Assuntos
Enzima de Conversão de Angiotensina 2 , Tratamento Farmacológico da COVID-19 , Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Cisteamina/farmacologia , Humanos , Peptidil Dipeptidase A/metabolismo , Preparações Farmacêuticas , SARS-CoV-2 , Compostos de Sulfidrila/farmacologia
2.
Sci Transl Med ; 14(658): eabn6868, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35511920

RESUMO

Transmission-blocking strategies that slow the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and protect against coronavirus disease 2019 (COVID-19) are needed. We have developed an orally delivered adenovirus type 5-vectored SARS-CoV-2 vaccine candidate that expresses the spike protein. Here, we demonstrated that hamsters vaccinated by the oral or intranasal route had robust and cross-reactive antibody responses. We then induced a postvaccination infection by inoculating vaccinated hamsters with SARS-CoV-2. Orally or intranasally vaccinated hamsters had decreased viral RNA and infectious virus in the nose and lungs and experienced less lung pathology compared to mock-vaccinated hamsters after SARS-CoV-2 challenge. Naïve hamsters exposed in a unidirectional air flow chamber to mucosally vaccinated, SARS-CoV-2-infected hamsters also had lower nasal swab viral RNA and exhibited fewer clinical symptoms than control animals, suggesting that the mucosal route reduced viral transmission. The same platform encoding the SARS-CoV-2 spike and nucleocapsid proteins elicited mucosal cross-reactive SARS-CoV-2-specific IgA responses in a phase 1 clinical trial (NCT04563702). Our data demonstrate that mucosal immunization is a viable strategy to decrease SARS-CoV-2 disease and airborne transmission.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adenoviridae , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Ensaios Clínicos Fase I como Assunto , Cricetinae , Humanos , RNA Viral , SARS-CoV-2 , Índice de Gravidade de Doença
3.
J Infect Dis ; 225(1): 34-41, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34758086

RESUMO

BACKGROUND: Vaccines that are shelf stable and easy to administer are crucial to improve vaccine access and reduce severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission around the world. METHODS: In this study, we demonstrate that an oral, adenovirus-based vaccine candidate protects against SARS-CoV-2 in a Syrian hamster challenge model. RESULTS: Hamsters administered 2 doses of VXA-CoV2-1 showed a reduction in weight loss and lung pathology and had completely eliminated infectious virus 5 days postchallenge. Oral immunization induced antispike immunoglobulin G, and neutralizing antibodies were induced upon oral immunization with the sera, demonstrating neutralizing activity. CONCLUSIONS: Overall, these data demonstrate the ability of oral vaccine candidate VXA-CoV2-1 to provide protection against SARS-CoV-2 disease.


Assuntos
Vacinas contra Adenovirus/administração & dosagem , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Mesocricetus , Vacinas contra Adenovirus/imunologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Cricetinae , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação
4.
Pediatr Res ; 89(1): 91-101, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32221473

RESUMO

BACKGROUND: Necrotizing enterocolitis (NEC) develops through exaggerated toll-like receptor 4 (TLR4) signaling in the intestinal epithelium. Breast milk is rich in non-digestible oligosaccharides and prevents NEC through unclear mechanisms. We now hypothesize that the human milk oligosaccharides 2'-fucosyllactose (2'-FL) and 6'-sialyllactose (6'-SL) can reduce NEC through inhibition of TLR4 signaling. METHODS: NEC was induced in newborn mice and premature piglets and infant formula was supplemented with 2'-FL, 6'-SL, or lactose. Intestinal tissue was obtained at surgical resection. HMO inhibition of TLR4 was assessed in IEC-6 enterocytes, mice, and human tissue explants and via in silico modeling. RESULTS: Supplementation of infant formula with either 2'-FL and/or 6'-SL, but not the parent sugar lactose, reduced NEC in mice and piglets via reduced apoptosis, inflammation, weight loss, and histological appearance. Mechanistically, both 2'-FL and 6'-SL, but not lactose, reduced TLR4-mediated nuclear factor kappa light-chain enhancer of activated B cells (NF-kB) inflammatory signaling in the mouse and human intestine. Strikingly, in silico modeling revealed 2'-FL and 6'-SL, but not lactose, to dock into the binding pocket of the TLR4-MD2 complex, explaining their ability to inhibit TLR4 signaling. CONCLUSIONS: 2'-FL and 6'-SL, but not lactose, prevent NEC in mice and piglet models and attenuate NEC inflammation in the human ileum, in part through TLR4 inhibition. IMPACT: Necrotizing enterocolitis (NEC) is a major cause of morbidity and mortality in premature infants that occurs in the setting of bacterial colonization of the gut and administration of formula feeds and activation by the innate immune receptor toll-like receptor 4 (TLR4). Breast milk prevents NEC through unclear mechanisms. We now show that breast milk-enriched human milk oligosaccharides (HMOs) that are derived from lactose prevent NEC through inhibition of TLR4. The human milk oligosaccharides 2'-FL and 6'-SL, but not the backbone sugar lactose, prevent NEC in mice and piglets. 2'-FL and 6'-SL but not lactose inhibited TLR4 signaling in cultured enterocytes, in enteroids derived from mouse intestine, and in human intestinal explants obtained at the time of surgical resection for patients with NEC. In seeking the mechanisms involved, 2'-FL and 6'-SL but not lactose were found to directly bind to TLR4, explaining the inhibition and protection against NEC. These findings may impact clinical practice by suggesting that administration of HMOs could serve as a preventive strategy for premature infants at risk for NEC development.


Assuntos
Enterocolite Necrosante/prevenção & controle , Íleo/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Lactose/análogos & derivados , Leite Humano/química , Receptor 4 Toll-Like/antagonistas & inibidores , Trissacarídeos/farmacologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Enterocolite Necrosante/imunologia , Enterocolite Necrosante/metabolismo , Enterocolite Necrosante/patologia , Humanos , Íleo/imunologia , Íleo/metabolismo , Íleo/patologia , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Lactose/isolamento & purificação , Lactose/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Transdução de Sinais , Sus scrofa , Receptor 4 Toll-Like/metabolismo , Trissacarídeos/isolamento & purificação , Redução de Peso/efeitos dos fármacos
5.
bioRxiv ; 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33330868

RESUMO

Neutrophil-induced oxidative stress is a mechanism of lung injury in COVID-19, and drugs with a functional thiol group ("thiol drugs"), especially cysteamine, have anti-oxidant and anti-inflammatory properties that could limit this injury. Thiol drugs may also alter the redox status of the cysteine-rich SARS-CoV-2 spike glycoprotein (SARS-2-S) and thereby disrupt ACE2 binding. Using ACE2 binding assay, reporter virus pseudotyped with SARS-CoV-2 spikes (ancestral and variants) and authentic SARS-CoV-2 (Wuhan-1), we find that multiple thiol drugs inhibit SARS-2-S binding to ACE2 and virus entry into cells. Pseudoviruses carrying variant spikes were less efficiently inhibited as compared to pseudotypes bearing an ancestral spike, but the most potent drugs still inhibited the Delta variant in the low millimolar range. IC50 values followed the order of their cystine cleavage rates and lower thiol pKa values. In hamsters infected with SARS-CoV-2, intraperitoneal (IP) cysteamine decreased neutrophilic inflammation and alveolar hemorrhage in the lungs but did not decrease viral infection, most likely because IP delivery could not achieve millimolar concentrations in the airways. These data show that thiol drugs inhibit SARS-CoV-2 infection in vitro and reduce SARS-CoV-2-related lung injury in vivo and provide strong rationale for trials of systemically delivered thiol drugs as COVID-19 treatments. We propose that antiviral effects of thiol drugs in vivo will require delivery directly to the airways to ensure millimolar drug concentrations and that thiol drugs with lower thiol pKa values are most likely to be effective.

7.
Cell Mol Gastroenterol Hepatol ; 9(3): 403-423, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31756560

RESUMO

BACKGROUND & AIMS: Necrotizing enterocolitis (NEC) is a devastating disease of premature infants characterized by Toll-like receptor 4 (TLR4)-dependent intestinal inflammation and enterocyte death. Given that necroptosis is a proinflammatory cell death process that is linked to bacterial signaling, we investigated its potential role in NEC, and the mechanisms involved. METHODS: Human and mouse NEC intestine were analyzed for necroptosis gene expression (ie, RIPK1, RIPK3, and MLKL), and protein activation (phosphorylated RIPK3). To evaluate a potential role for necroptosis in NEC, the effects of genetic (ie, Ripk3 knockout or Mlkl knockout) or pharmacologic (ie, Nec1s) inhibition of intestinal inflammation were assessed in a mouse NEC model, and a possible upstream role of TLR4 was assessed in Tlr4-deficient mice. The NEC-protective effects of human breast milk and its constituent milk oligosaccharides on necroptosis were assessed in a NEC-in-a-dish model, in which mouse intestinal organoids were cultured as either undifferentiated or differentiated epithelium in the presence of NEC bacteria and hypoxia. RESULTS: Necroptosis was activated in the intestines of human and mouse NEC in a TLR4-dependent manner, and was up-regulated specifically in differentiated epithelium of the immature ileum. Inhibition of necroptosis genetically and pharmacologically reduced intestinal-epithelial cell death and mucosal inflammation in experimental NEC, and ex vivo in the NEC-in-a-dish system. Strikingly, the addition of human breast milk, or the human milk oligosaccharide 2 fucosyllactose in the ex vivo system, reduced necroptosis and inflammation. CONCLUSIONS: Necroptosis is activated in the intestinal epithelium upon TLR4 signaling and is required for NEC development, and explains in part the protective effects of breast milk.


Assuntos
Enterocolite Necrosante/patologia , Enterócitos/patologia , Mucosa Intestinal/patologia , Leite Humano/química , Necroptose/imunologia , Animais , Modelos Animais de Doenças , Enterocolite Necrosante/tratamento farmacológico , Enterocolite Necrosante/genética , Enterocolite Necrosante/imunologia , Enterócitos/efeitos dos fármacos , Enterócitos/imunologia , Feminino , Humanos , Recém-Nascido , Mucosa Intestinal/efeitos dos fármacos , Camundongos , Camundongos Knockout , Necroptose/efeitos dos fármacos , Proteínas Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Trissacarídeos/farmacologia , Trissacarídeos/uso terapêutico , Regulação para Cima
8.
J Immunol ; 203(11): 3000-3012, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31645418

RESUMO

Angiotensin-converting enzyme 2 (ACE2) is a potent negative regulator capable of restraining overactivation of the renin-angiotensin system, which contributes to exuberant inflammation after bacterial infection. However, the mechanism through which ACE2 modulates this inflammatory response is not well understood. Accumulating evidence indicates that infectious insults perturb ACE2 activity, allowing for uncontrolled inflammation. In the current study, we demonstrate that pulmonary ACE2 levels are dynamically varied during bacterial lung infection, and the fluctuation is critical in determining the severity of bacterial pneumonia. Specifically, we found that a pre-existing and persistent deficiency of active ACE2 led to excessive neutrophil accumulation in mouse lungs subjected to bacterial infection, resulting in a hyperinflammatory response and lung damage. In contrast, pre-existing and persistent increased ACE2 activity reduces neutrophil infiltration and compromises host defense, leading to overwhelming bacterial infection. Further, we found that the interruption of pulmonary ACE2 restitution in the model of bacterial lung infection delays the recovery process from neutrophilic lung inflammation. We observed the beneficial effects of recombinant ACE2 when administered to bacterially infected mouse lungs following an initial inflammatory response. In seeking to elucidate the mechanisms involved, we discovered that ACE2 inhibits neutrophil infiltration and lung inflammation by limiting IL-17 signaling by reducing the activity of the STAT3 pathway. The results suggest that the alteration of active ACE2 is not only a consequence of bacterial lung infection but also a critical component of host defense through modulation of the innate immune response to bacterial lung infection by regulating neutrophil influx.


Assuntos
Inflamação/imunologia , Neutrófilos/imunologia , Peptidil Dipeptidase A/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Enzima de Conversão de Angiotensina 2 , Animais , Modelos Animais de Doenças , Feminino , Imidazóis/administração & dosagem , Imidazóis/farmacologia , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Leucina/administração & dosagem , Leucina/análogos & derivados , Leucina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Testes de Sensibilidade Microbiana , Neutrófilos/efeitos dos fármacos , Neutrófilos/patologia , Peptidil Dipeptidase A/deficiência , Peptidil Dipeptidase A/genética , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/efeitos dos fármacos
9.
Comp Med ; 69(2): 151-154, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30902118

RESUMO

In November 2015, an 83-d-old juvenile male common marmoset (Callithrix jacchus) in good body condition was found dead in his family cage with no previous premonitory signs. Necropsy revealed a gas-distended abdomen, feces-distended large bowel, and a full-thickness distal colonic perforation resulting in fecal peritonitis. The distal colon ended in a blind pouch at 7 mm prior to the expected anal opening, consistent with atresia ani. Here we present this case, briefly discuss the human and veterinary literature regarding correction of anorectal malformations, and highlight the importance of identifying such devastating congenital defects in breeding colonies while limiting the disruption and handling of seemingly healthy, young NHP raised in a complex social setting.


Assuntos
Anus Imperfurado/veterinária , Colo/lesões , Doenças dos Macacos/congênito , Animais , Callithrix , Evolução Fatal , Masculino , Ruptura/veterinária
10.
Tissue Eng Part A ; 25(17-18): 1225-1241, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30652526

RESUMO

IMPACT STATEMENT: This study is significant because it demonstrates an attempt to design a scaffold specifically for small intestine using a novel fabrication method, resulting in an architecture that resembles intestinal villi. In addition, we use the versatile polymer poly(glycerol sebacate) (PGS) for artificial intestine, which has tunable mechanical and degradation properties that can be harnessed for further fine-tuning of scaffold design. Moreover, the utilization of PGS allows for future development of growth factor and drug delivery from the scaffolds to promote artificial intestine formation.


Assuntos
Intestinos/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Decanoatos/química , Glicerol/análogos & derivados , Glicerol/química , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Polímeros/química , Suínos
11.
PLoS Genet ; 11(4): e1005117, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25875092

RESUMO

After fertilization but prior to the onset of zygotic transcription, the C. elegans zygote cleaves asymmetrically to create the anterior AB and posterior P1 blastomeres, each of which goes on to generate distinct cell lineages. To understand how patterns of RNA inheritance and abundance arise after this first asymmetric cell division, we pooled hand-dissected AB and P1 blastomeres and performed RNA-seq. Our approach identified over 200 asymmetrically abundant mRNA transcripts. We confirmed symmetric or asymmetric abundance patterns for a subset of these transcripts using smFISH. smFISH also revealed heterogeneous subcellular patterning of the P1-enriched transcripts chs-1 and bpl-1. We screened transcripts enriched in a given blastomere for embryonic defects using RNAi. The gene neg-1 (F32D1.6) encoded an AB-enriched (anterior) transcript and was required for proper morphology of anterior tissues. In addition, analysis of the asymmetric transcripts yielded clues regarding the post-transcriptional mechanisms that control cellular mRNA abundance during asymmetric cell divisions, which are common in developing organisms.


Assuntos
Divisão Celular Assimétrica , Blastômeros/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Morfogênese , Proteínas Nucleares/metabolismo , RNA Mensageiro/metabolismo , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas Nucleares/genética , RNA Mensageiro/genética
12.
Science ; 335(6073): 1232-5, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22323741

RESUMO

Apical constriction changes cell shapes, driving critical morphogenetic events, including gastrulation in diverse organisms and neural tube closure in vertebrates. Apical constriction is thought to be triggered by contraction of apical actomyosin networks. We found that apical actomyosin contractions began before cell shape changes in both Caenorhabitis elegans and Drosophila. In C. elegans, actomyosin networks were initially dynamic, contracting and generating cortical tension without substantial shrinking of apical surfaces. Apical cell-cell contact zones and actomyosin only later moved increasingly in concert, with no detectable change in actomyosin dynamics or cortical tension. Thus, apical constriction appears to be triggered not by a change in cortical tension, but by dynamic linking of apical cell-cell contact zones to an already contractile apical cortex.


Assuntos
Actomiosina/fisiologia , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Forma Celular , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Gastrulação , Actomiosina/química , Animais , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Simulação por Computador , Citoesqueleto/fisiologia , Citoesqueleto/ultraestrutura , Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , Recuperação de Fluorescência Após Fotodegradação , Junções Intercelulares/fisiologia , Junções Intercelulares/ultraestrutura , Fenômenos Mecânicos , Modelos Biológicos , Morfogênese , Miosinas/química , Miosinas/fisiologia
13.
Development ; 138(20): 4411-22, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21903670

RESUMO

Cell divisions are sometimes oriented by extrinsic signals, by mechanisms that are poorly understood. Proteins containing TPR and GoLoco-domains (C. elegans GPR-1/2, Drosophila Pins, vertebrate LGN and AGS3) are candidates for mediating mitotic spindle orientation by extrinsic signals, but the mechanisms by which TPR-GoLoco proteins may localize in response to extrinsic cues are not well defined. The C. elegans TPR-GoLoco protein pair GPR-1/2 is enriched at a site of contact between two cells - the endomesodermal precursor EMS and the germline precursor P(2) - and both cells align their divisions toward this shared cell-cell contact. To determine whether GPR-1/2 is enriched at this site within both cells, we generated mosaic embryos with GPR-1/2 bearing a different fluorescent tag in different cells. We were surprised to find that GPR-1/2 distribution is symmetric in EMS, where GPR-1/2 had been proposed to function as an asymmetric cue for spindle orientation. Instead, GPR-1/2 is asymmetrically distributed only in P(2). We demonstrate a role for normal GPR-1/2 localization in P(2) division orientation. We show that MES-1/Src signaling plays an instructive role in P(2) for asymmetric GPR-1/2 localization and normal spindle orientation. We ruled out a model in which signaling localizes GPR-1/2 by locally inhibiting LET-99, a GPR-1/2 antagonist. Instead, asymmetric GPR-1/2 distribution is established by destabilization at one cell contact, diffusion, and trapping at another cell contact. Once the mitotic spindle of P(2) is oriented normally, microtubule-dependent removal of GPR-1/2 prevented excess accumulation, in an apparent negative-feedback loop. These results highlight the role of dynamic TPR-GoLoco protein localization as a key mediator of mitotic spindle alignment in response to instructive, external cues.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Fuso Acromático/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Comunicação Celular , Divisão Celular , Microtúbulos/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais
14.
Semin Cell Dev Biol ; 22(8): 842-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21807106

RESUMO

In multicellular animals, cell communication sometimes serves to orient the direction in which cells divide. Control of division orientation has been proposed to be critical for partitioning developmental determinants and for maintaining epithelial architecture. Surprisingly, there are few cases where we understand the mechanisms by which external cues, transmitted by intercellular signaling, specify the division orientation of animal cells. One would predict that cytosolic molecules or complexes exist that are capable of interpreting extrinsic cues, translating the positions of these cues into forces on microtubules of the mitotic spindle. In recent years, a key intracellular complex has been identified that is required for pulling forces on mitotic spindles in Drosophila, Caenorhabditis elegans and vertebrate systems. One member of this complex, a protein with tetratricopeptide repeat (TPR) and GoLoco (Gα-binding) domains, has been found localized in positions that coincide with the positions of spindle-orienting extracellular cues. Do TPR-GoLoco proteins function as conserved, spatially regulated mediators of spindle orientation by intercellular signaling? Here, we review the relevant evidence among cases from diverse animal systems where this protein complex has been found to localize to specific cell-cell contacts and to be involved in orienting mitotic spindles.


Assuntos
Caenorhabditis elegans/citologia , Drosophila/citologia , Transdução de Sinais , Fuso Acromático/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Drosophila/metabolismo , Microtúbulos/metabolismo
15.
PLoS Biol ; 7(4): e1000088, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19385718

RESUMO

The displacement of the mitotic spindle to one side of a cell is important for many cells to divide unequally. While recent progress has begun to unveil some of the molecular mechanisms of mitotic spindle displacement, far less is known about how spindle displacement is precisely timed. A conserved mitotic progression mechanism is known to time events in dividing cells, although this has never been linked to spindle displacement. This mechanism involves the anaphase-promoting complex (APC), its activator Cdc20/Fizzy, its degradation target cyclin, and cyclin-dependent kinase (CDK). Here we show that these components comprise a previously unrecognized timer for spindle displacement. In the Caenorhabditis elegans zygote, mitotic spindle displacement begins at a precise time, soon after chromosomes congress to the metaphase plate. We found that reducing the function of the proteasome, the APC, or Cdc20/Fizzy delayed spindle displacement. Conversely, inactivating CDK in prometaphase caused the spindle to displace early. The consequence of experimentally unlinking spindle displacement from this timing mechanism was the premature displacement of incompletely assembled components of the mitotic spindle. We conclude that in this system, asymmetric positioning of the mitotic spindle is normally delayed for a short time until the APC inactivates CDK, and that this delay ensures that the spindle does not begin to move until it is fully assembled. To our knowledge, this is the first demonstration that mitotic progression times spindle displacement in the asymmetric division of an animal cell. We speculate that this link between the cell cycle and asymmetric cell division might be evolutionarily conserved, because the mitotic spindle is displaced at a similar stage of mitosis during asymmetric cell divisions in diverse systems.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Proteínas de Ciclo Celular/fisiologia , Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Mitose/fisiologia , Fuso Acromático/fisiologia , Ciclossomo-Complexo Promotor de Anáfase , Animais , Caenorhabditis elegans/embriologia , Cromossomos/fisiologia , Quinases Ciclina-Dependentes/fisiologia , Ciclinas/fisiologia , Complexo de Endopeptidases do Proteassoma/fisiologia , Complexos Ubiquitina-Proteína Ligase/fisiologia , Zigoto/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...