Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 6(3): e1000881, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20333234

RESUMO

Drosophila Lnk is the single ancestral orthologue of a highly conserved family of structurally-related intracellular adaptor proteins, the SH2B proteins. As adaptors, they lack catalytic activity but contain several protein-protein interaction domains, thus playing a critical role in signal transduction from receptor tyrosine kinases to form protein networks. Physiological studies of SH2B function in mammals have produced conflicting data. However, a recent study in Drosophila has shown that Lnk is an important regulator of the insulin/insulin-like growth factor (IGF)-1 signaling (IIS) pathway during growth, functioning in parallel to the insulin receptor substrate, Chico. As this pathway also has an evolutionary conserved role in the determination of organism lifespan, we investigated whether Lnk is required for normal lifespan in Drosophila. Phenotypic analysis of mutants for Lnk revealed that loss of Lnk function results in increased lifespan and improved survival under conditions of oxidative stress and starvation. Starvation resistance was found to be associated with increased metabolic stores of carbohydrates and lipids indicative of impaired metabolism. Biochemical and genetic data suggest that Lnk functions in both the IIS and Ras/Mitogen activated protein Kinase (MapK) signaling pathways. Microarray studies support this model, showing transcriptional feedback onto genes in both pathways as well as indicating global changes in both lipid and carbohydrate metabolism. Finally, our data also suggest that Lnk itself may be a direct target of the IIS responsive transcription factor, dFoxo, and that dFoxo may repress Lnk expression. We therefore describe novel functions for a member of the SH2B protein family and provide the first evidence for potential mechanisms of SH2B regulation. Our findings suggest that IIS signaling in Drosophila may require the activity of a second intracellular adaptor, thereby yielding fundamental new insights into the functioning and role of the IIS pathway in ageing and metabolism.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Longevidade/fisiologia , Estresse Oxidativo , Animais , Tamanho Corporal , Drosophila melanogaster/genética , Feminino , Fertilidade , Regulação da Expressão Gênica , Insulina/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Masculino , Mutação/genética , Estresse Oxidativo/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Caracteres Sexuais , Inanição , Transcrição Gênica , Proteínas ras/metabolismo
2.
PLoS Genet ; 5(8): e1000596, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19680438

RESUMO

Insulin/insulin-like growth factor signaling (IIS) plays a pivotal role in the regulation of growth at the cellular and the organismal level during animal development. Flies with impaired IIS are developmentally delayed and small due to fewer and smaller cells. In the search for new growth-promoting genes, we identified mutations in the gene encoding Lnk, the single fly member of the SH2B family of adaptor molecules. Flies lacking lnk function are viable but severely reduced in size. Furthermore, lnk mutants display phenotypes reminiscent of reduced IIS, such as developmental delay, female sterility, and accumulation of lipids. Genetic epistasis analysis places lnk downstream of the insulin receptor (InR) and upstream of phosphoinositide 3-kinase (PI3K) in the IIS cascade, at the same level as chico (encoding the single fly insulin receptor substrate [IRS] homolog). Both chico and lnk mutant larvae display a similar reduction in IIS activity as judged by the localization of a PIP(3) reporter and the phosphorylation of protein kinase B (PKB). Furthermore, chico; lnk double mutants are synthetically lethal, suggesting that Chico and Lnk fulfill independent but partially redundant functions in the activation of PI3K upon InR stimulation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Família Multigênica , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Animais , Tamanho Corporal , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/química , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Insulina/genética , Proteínas Substratos do Receptor de Insulina , Peptídeos e Proteínas de Sinalização Intracelular/genética , Dados de Sequência Molecular , Mutação , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Alinhamento de Sequência , Domínios de Homologia de src
3.
PLoS One ; 3(1): e1447, 2008 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-18197257

RESUMO

BACKGROUND: Activation of cell surface receptors transduces extracellular signals into cellular responses such as proliferation, differentiation and survival. However, as important as the activation of these receptors is their appropriate spatial and temporal down-regulation for normal development and tissue homeostasis. The Cbl family of E3-ubiquitin ligases plays a major role for the ligand-dependent inactivation of receptor tyrosine kinases (RTKs), most notably the Epidermal Growth Factor Receptor (EGFR) through ubiquitin-mediated endocytosis and lysosomal degradation. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the mutant phenotypes of Drosophila cbl (D-cbl) during eye development. D-cbl mutants display overgrowth, inhibition of apoptosis, differentiation defects and increased ommatidial spacing. Using genetic interaction and molecular markers, we show that most of these phenotypes are caused by increased activity of the Drosophila EGFR. Our genetic data also indicate a critical role of ubiquitination for D-cbl function, consistent with biochemical models. CONCLUSIONS/SIGNIFICANCE: These data may provide a mechanistic model for the understanding of the oncogenic activity of mammalian cbl genes.


Assuntos
Apoptose/fisiologia , Diferenciação Celular/fisiologia , Proteínas de Drosophila/fisiologia , Olho/embriologia , Proteínas Proto-Oncogênicas c-cbl/fisiologia , Animais , Drosophila , Proteínas de Drosophila/genética , Receptores ErbB/metabolismo , Imuno-Histoquímica , Mutação , Proteínas Proto-Oncogênicas c-cbl/genética
4.
Development ; 132(24): 5343-52, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16280349

RESUMO

Incorrectly specified or mis-specified cells often undergo cell death or are transformed to adopt a different cell fate during development. The underlying cause for this distinction is largely unknown. In many developmental mutants in Drosophila, large numbers of mis-specified cells die synchronously, providing a convenient model for analysis of this phenomenon. The maternal mutant bicoid is particularly useful model with which to address this issue because its mutant phenotype is a combination of both transformation of tissue (acron to telson) and cell death in the presumptive head and thorax regions. We show that a subset of these mis-specified cells die through an active gene-directed process involving transcriptional upregulation of the cell death inducer hid. Upregulation of hid also occurs in oskar mutants and other segmentation mutants. In hid bicoid double mutants, mis-specified cells in the presumptive head and thorax survive and continue to develop, but they are transformed to adopt a different cell fate. We provide evidence that the terminal torso signaling pathway protects the mis-specified telson tissue in bicoid mutants from hid-induced cell death, whereas mis-specified cells in the head and thorax die, presumably because equivalent survival signals are lacking. These data support a model whereby mis-specification can be tolerated if a survival pathway is provided, resulting in cellular transformation.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Proteínas de Homeodomínio/fisiologia , Neuropeptídeos/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Transativadores/fisiologia , Animais , Padronização Corporal , Caspases/metabolismo , Morte Celular/fisiologia , Diferenciação Celular/fisiologia , Sobrevivência Celular , Drosophila/embriologia , Drosophila/genética , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , Ativação Enzimática , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Mutação , Neuropeptídeos/biossíntese , Neuropeptídeos/genética , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais , Transativadores/genética
5.
Nature ; 421(6920): 279-82, 2003 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-12508118

RESUMO

Germ cells preserve an individual's genetic information and transmit it to the next generation. Early in development germ cells are set aside and undergo a specialized developmental programme, a hallmark of which is the migration from their site of origin to the future gonad. In Drosophila, several factors have been identified that control germ-cell migration to their target tissues; however, the germ-cell chemoattractant or its receptor have remained unknown. Here we apply genetics and in vivo imaging to show that odysseus, a zebrafish homologue of the G-protein-coupled chemokine receptor Cxcr4, is required specifically in germ cells for their chemotaxis. odysseus mutant germ cells are able to activate the migratory programme, but fail to undergo directed migration towards their target tissue, resulting in randomly dispersed germ cells. SDF-1, the presumptive cognate ligand for Cxcr4, shows a similar loss-of-function phenotype and can recruit germ cells to ectopic sites in the embryo, thus identifying a vertebrate ligand-receptor pair guiding migratory germ cells at all stages of migration towards their target.


Assuntos
Quimiotaxia , Células Germinativas/citologia , Células Germinativas/metabolismo , Receptores CXCR4/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Quimiocina CXCL12 , Quimiocinas CXC/genética , Quimiocinas CXC/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Mutação/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CXCR4/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...