Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 103(5): 1869-1884, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32530511

RESUMO

Cereal endosperm represents the most important source of the world's food; nevertheless, the molecular mechanisms underlying cell and tissue differentiation in cereal grains remain poorly understood. Endosperm cellularization commences at the maternal-filial intersection of grains and generates endosperm transfer cells (ETCs), a cell type with a prominent anatomy optimized for efficient nutrient transport. Barley HISTIDINE KINASE1 (HvHK1) was identified as a receptor component with spatially restricted expression in the syncytial endosperm where ETCs emerge. Here, we demonstrate its function in ETC fate acquisition using RNA interference-mediated downregulation of HvHK1. Repression of HvHK1 impairs cell specification in the central ETC region and the development of transfer cell morphology, and consecutively defects differentiation of adjacent endosperm tissues. Coinciding with reduced expression of HvHK1, disturbed cell plate formation and fusion were observed at the initiation of endosperm cellularization, revealing that HvHK1 triggers initial cytokinesis of ETCs. Cell-type-specific RNA sequencing confirmed loss of transfer cell identity, compromised cell wall biogenesis and reduced transport capacities in aberrant cells and elucidated two-component signaling and hormone pathways that are mediated by HvHK1. Gene regulatory network modeling was used to specify the direct targets of HvHK1; this predicted non-canonical auxin signaling elements as the main regulatory links governing cellularization of ETCs, potentially through interaction with type-B response regulators. This work provides clues to previously unknown molecular mechanisms directing ETC specification, a process with fundamental impact on grain yield in cereals.


Assuntos
Diferenciação Celular , Endosperma/crescimento & desenvolvimento , Histidina Quinase/metabolismo , Hordeum/metabolismo , Proteínas de Plantas/metabolismo , Divisão Celular , Polaridade Celular , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Histidina Quinase/fisiologia , Hordeum/enzimologia , Hordeum/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia
2.
Front Plant Sci ; 10: 548, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114602

RESUMO

Three transgenic HOSUT lines of winter wheat, HOSUT12, HOSUT20, and HOSUT24, each harbor a single copy of the cDNA for the barley sucrose transporter gene HvSUT1 (SUT), which was fused to the barley endosperm-specific Hordein B1 promoter (HO; the HOSUT transgene). Previously, flow cytometry combined with PCR analysis demonstrated that the HOSUT transgene had been integrated into different wheat chromosomes: 7A, 5D, and 4A in HOSUT12, HOSUT20, and HOSUT24, respectively. In order to confirm the chromosomal location of the HOSUT transgene by a cytological approach using wheat aneuploid stocks, we crossed corresponding nullisomic-tetrasomic lines with the three HOSUT lines, namely nullisomic 7A-tetrasomic 7B with HOSUT12, nullisomic 5D-tetrasomic 5B with HOSUT20, and nullisomic 4A-tetrasomic 4B with HOSUT24. We examined the resulting chromosomal constitutions and the presence of the HOSUT transgene in the F2 progeny by means of chromosome banding and PCR. The chromosome banding patterns of the critical chromosomes in the original HOSUT lines showed no difference from those of the corresponding wild type chromosomes. The presence or absence of the critical chromosomes completely corresponded to the presence or absence of the HOSUT transgene in the F2 plants. Investigating telocentric chromosomes occurred in the F2 progeny, which were derived from the respective critical HOSUT chromosomes, we found that the HOSUT transgene was individually integrated on the long arms of chromosomes 4A, 7A, and 5D in the three HOSUT lines. Thus, in this study we verified the chromosomal locations of the transgene, which had previously been determined by flow cytometry, and moreover revealed the chromosome-arm locations of the HOSUT transgene in the HOSUT lines.

3.
PLoS One ; 13(10): e0205452, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30304020

RESUMO

Two winter wheat (Triticum aestivum L.) populations, i.e. 180 genetic resources and 210 elite varieties, were compared in a field trial to analyse how grain number and grain yield distribution along the spike changed during the breeding process and how this associates to yield-related traits. Elites showed in average 38% more yield compared to resources. This breeding improvement mainly derived from an increase in grains and yield per spike in addition to grains and yield per spikelet. These increments corresponded to 19, 23, 21 and 25%, respectively. Not much gain in thousand grain weight (4%) was observed in elites as compared to resources. The number of spikelets per spike was not, or even negatively, correlated with most traits, except of grains per spike, which suggests that this trait was not favoured during breeding. The grain number and grain yield distributions along the spike (GDAS and GYDAS) were measured and compared by using a novel mathematical tool. GDAS and GYDAS measure the deviation of a spike of interest from the architecture of a model spike with even grain and yield distribution along all spikelets, respectively. Both traits were positively correlated. Elites showed in average only a 1% improvement in GDAS and GYDAS values compared to resources. This comparison revealed that breeding increased grain number and yield uniformly along the spike without changing relative yield input of individual spikelets, thereby, maintaining the general spike architecture.


Assuntos
Grão Comestível/genética , Melhoramento Vegetal , Estações do Ano , Triticum/genética , Grão Comestível/crescimento & desenvolvimento , Variação Genética , Genótipo , Modelos Teóricos , Locos de Características Quantitativas , Seleção Genética , Triticum/crescimento & desenvolvimento
4.
J Exp Bot ; 68(20): 5511-5525, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29069444

RESUMO

Crop yield stability must be ensured under future climate conditions such as elevated CO2 and high temperatures. We tested 'HOSUT', a winter wheat line expressing a grain-targeted sucrose transporter of barley in response to combinations of CO2 enrichment, a heat wave, and high nitrogen fertilization. Compared with wild-type Certo, HOSUT had a superior performance for grain yield, aboveground biomass, and ears per plant, obviously due to transgene activity in developing grains and young vegetative sinks. HOSUT grains were larger and contained more endosperm cells. HOSUT and high CO2 effects similarly improved phenological and yield-related traits. Significant HOSUT-CO2 interactions for biomass of stems, ears, grain yield, nitrogen yield, and grain number revealed that Certo was promoted by CO2 enrichment, whereas HOSUT responded weakly. CO2 enrichment strongly reduced and HOSUT effects weakly reduced grain nitrogen, storage proteins, and free amino acids. In contrast to CO2 enrichment, HOSUT effects did not impair grain micronutrient concentrations. Significant HOSUT-nitrogen fertilization interactions for ear biomass, grain yield, grain number per plant, and harvest index indicated that HOSUT benefited more from additional nitrogen. The heat wave decreased aboveground and ear biomass, grain yield, harvest index, grain size, and starch and water use, but increased grain sucrose concentration.


Assuntos
Dióxido de Carbono/metabolismo , Mudança Climática , Hordeum/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/genética , Triticum/crescimento & desenvolvimento , Triticum/genética , Fertilizantes/análise , Temperatura Alta/efeitos adversos , Proteínas de Membrana Transportadoras/metabolismo , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
5.
J Exp Bot ; 68(16): 4595-4612, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28981782

RESUMO

Sucrose transport and partitioning are crucial for seed filling. While many plasma-membrane-localised sucrose transporters (SUT1 family members) have been analysed in seeds, the functions of vacuolar SUT2 members are still obscure. In barley grains, expression of HvSUT1 and HvSUT2 overlap temporally and spatially, suggesting concerted functions to regulate sucrose homeostasis. Using HvSUT2-RNAi plants, we found that grains were also deficient in HvSUT1 expression and seemingly sucrose-limited during mid-to-late grain filling. Transgenic endosperms accumulated less starch and dry weight, although overall sucrose and hexose contents were higher. Comprehensive transcript and metabolite profiling revealed that genes related to glycolysis, the tricarboxylic acid cycle, starch and amino acid synthesis, grain maturation, and abscisic acid signalling were down-regulated together with most glycolytic intermediates and amino acids. Sucrose was increased along the sucrose delivery route in the nucellar projection, the endosperm transfer cells, and the starchy endosperm, indicating that suppressed transporter activity diminished sucrose efflux from vacuoles, which generated sugar deficiency in the cytoplasm. Thus, endosperm vacuoles may buffer sucrose concentrations to regulate homeostasis at grain filling. Transcriptional changes revealed that limited endosperm sucrose initiated sugar starvation responses, such as sugar recycling from starch, hemicelluloses and celluloses together with vacuolar protein degradation, thereby supporting formation of nucleotide sugars. Barley endosperm cells can thus suppress certain pathways to retrieve resources to maintain essential cell functions.


Assuntos
Hordeum/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Sacarose/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Transporte Biológico , Metabolismo dos Carboidratos/genética , Parede Celular/genética , Parede Celular/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/crescimento & desenvolvimento , Amido/genética , Amido/metabolismo
6.
Plant Methods ; 12: 24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27118986

RESUMO

BACKGROUND: Identification of transgene insertion sites in plant genomes has practical implications for crop breeding and is a stepping stone to analyze transgene function. However, single copy sequences are not always easy to localize in large plant genomes by standard approaches. RESULTS: We employed flow cytometric chromosome sorting to determine chromosomal location of barley sucrose transporter construct in three transgenic lines of common wheat. Flow-sorted chromosomes were used as template for PCR and fluorescence in situ hybridization to identify chromosomes with transgenes. The chromosomes carrying the transgenes were then confirmed by PCR using DNA amplified from single flow-sorted chromosomes as template. CONCLUSIONS: Insertion sites of the transgene were unambiguously localized to chromosomes 4A, 7A and 5D in three wheat transgenic lines. The procedure presented in this study is applicable for localization of any single-copy sequence not only in wheat, but in any plant species where suspension of intact mitotic chromosomes suitable for flow cytometric sorting can be prepared.

7.
J Proteomics ; 143: 106-121, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27102496

RESUMO

UNLABELLED: Due to its importance as a cereal crop worldwide, high interest in the determination of factors influencing barley grain quality exists. This study focusses on the elucidation of protein networks affecting early grain developmental processes. NanoLC-based separation coupled to label-free MS detection was applied to gain insights into biochemical processes during five different grain developmental phases (pre-storage until storage phase, 3days to 16days after flowering). Multivariate statistics revealed two distinct developmental patterns during the analysed grain developmental phases: proteins showed either highest abundance in the middle phase of development - in the transition phase - or at later developmental stages - within the storage phase. Verification of developmental patterns observed by proteomic analysis was done by applying hypothesis-driven approaches, namely Western Blot analysis and enzyme assays. High general metabolic activity of the grain with regard to protein synthesis, cell cycle regulation, defence against oxidative stress, and energy production via photosynthesis was observed in the transition phase. Proteins upregulated in the storage phase are related towards storage protein accumulation, and interestingly to the defence of storage reserves against pathogens. A mixed regulatory pattern for most enzymes detected in our study points to regulatory mechanisms at the level of protein isoforms. BIOLOGICAL SIGNIFICANCE: In-depth understanding of early grain developmental processes of cereal caryopses is of high importance as they influence final grain weight and quality. Our knowledge about these processes is still limited, especially on proteome level. To identify key mechanisms in early barley grain development, a label-free data-independent proteomics acquisition approach has been applied. Our data clearly show, that proteins either exhibit highest expression during cellularization and the switch to the storage phase (transition phase, 5-7 DAF), or during storage product accumulation (10-16 DAF). The results highlight versatile cellular metabolic activity in the transition phase and strong convergence towards storage product accumulation in the storage phase. Notably, both phases are characterized by particular protective mechanism, such as scavenging of oxidative stress and defence against pathogens, during the transition and the storage phase, respectively.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hordeum/metabolismo , Proteoma/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Proteômica/métodos
8.
J Exp Bot ; 67(9): 2675-87, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26951372

RESUMO

Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development.


Assuntos
Ácido Abscísico/metabolismo , Hordeum/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Ácido Abscísico/fisiologia , Hordeum/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Plantas Geneticamente Modificadas , Proteínas de Armazenamento de Sementes/análise , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/química , Sementes/metabolismo , Amido/análise , Sacarose/análise
9.
J Exp Bot ; 66(21): 6927-43, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26276866

RESUMO

The shape of the maternal pericarp affects cereal grain mass and yield. Pericarp growth was analysed by magnetic resonance imaging (MRI), revealing topological maps of mobile water in developing pericarp of barley (Hordeum vulgare) and displaying tissue regions actively elongating in specific temporal-spatial patterns. Correlation analysis of MRI signals and growth rates reveals that growth in length is mediated by dorsal and also lateral rather than ventral regions. Growth in thickness is related to ventral regions. Switching from dorsal to ventral growth is associated with differential expression of axial regulators of the HD-ZipIII and Kanadi/Ettin types, and NPH3 photoreceptors, suggesting light-mediated auxin re-distribution. Auxin increases with the highest levels in the basal pericarp at 6 days after fertilization (DAF), together with transcriptionally up-regulated auxin transport and signalling. Gibberellin biosynthesis is transcriptionally up-regulated only later, and levels of bioactive gibberellins increase from 7 to 13 DAF, with higher levels in ventral than dorsal regions. Differential gene expression related to cell expansion indicates genes related to apoplast acidification, wall relaxation, sugar cleavage, water transport, and cell wall biosynthesis. Candidate genes potentially involved in pericarp extension are distinguished by their temporal expression, representing potential isoforms responsible for dorsal-mediated early growth in length or ventral-mediated late growth in thickness.


Assuntos
Regulação da Expressão Gênica de Plantas , Hordeum/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Giberelinas/metabolismo , Hordeum/genética , Hordeum/metabolismo , Ácidos Indolacéticos/metabolismo , Imageamento por Ressonância Magnética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo
10.
J Exp Bot ; 66(5): 1397-411, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25617470

RESUMO

During grain filling in barley (Hordeum vulgare L. cv. Barke) reserves are remobilized from vegetative organs. Glumes represent the vegetative tissues closest to grains, senesce late, and are involved in the conversion of assimilates. To analyse glume development and metabolism related to grain filling, parallel transcript and metabolite profiling in glumes and endosperm were performed, showing that glume metabolism and development adjusts to changing grain demands, reflected by specific signatures of metabolite and transcript abundances. Before high endosperm sink strength is established by storage product accumulation, glumes form early, intermediary sink organs, shifting then to remobilizing and exporting source organs. Metabolic and transcriptional transitions occur at two phases: first, at the onset of endosperm filling, as a consequence of endosperm sink activity and assimilate depletion in endosperm and vascular tissues; second, at late grain filling, by developmental ageing and senescence. Regulation of and transition between phases are probably governed by specific NAC and WRKY transcription factors, and both abscisic and jasmonic acid, and are accompanied by changed expression of specific nitrogen transporters. Expression and metabolite profiling suggest glume-specific mechanisms of assimilate conversion and translocation. In summary, grain filling and endosperm sink strength coordinate phase changes in glumes via metabolic, hormonal, and transcriptional control. This study provides a comprehensive view of barley glume development and metabolism, and identifies candidate genes and associated pathways, potentially important for breeding improved grain traits.


Assuntos
Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Hordeum/metabolismo , Ácido Abscísico/metabolismo , Endosperma/genética , Perfilação da Expressão Gênica , Hordeum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
11.
Front Plant Sci ; 6: 1245, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26834760

RESUMO

Oligofructans represent one of the most important groups of sucrose-derived water-soluble carbohydrates in the plant kingdom. In cereals, oligofructans accumulate in above ground parts of the plants (stems, leaves, seeds) and their biosynthesis leads to the formation of both types of glycosidic linkages [ß(2,1); ß(2,6)-fructans] or mixed patterns. In recent studies, tissue- and development- specific distribution patterns of the various oligofructan types in cereal grains have been shown, which are possibly related to the different phases of grain development, such as cellular differentiation of grain tissues and storage product accumulation. Here, we summarize the current knowledge about oligofructan biosynthesis and accumulation kinetics in cereal grains. We focus on the spatiotemporal dynamics and regulation of oligofructan biosynthesis and accumulation in developing barley grains (deduced from a combination of metabolite, transcript and proteome analyses). Finally, putative physiological functions of oligofructans in developing grains are discussed.

12.
Plant Cell ; 26(9): 3728-44, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25271242

RESUMO

Barley (Hordeum vulgare) grain development follows a series of defined morphological and physiological stages and depends on the supply of assimilates (mainly sucrose) from the mother plant. Here, spatio-temporal patterns of sugar distributions were investigated by mass spectrometric imaging, targeted metabolite analyses, and transcript profiling of microdissected grain tissues. Distinct spatio-temporal sugar balances were observed, which may relate to differentiation and grain filling processes. Notably, various types of oligofructans showed specific distribution patterns. Levan- and graminan-type oligofructans were synthesized in the cellularized endosperm prior to the commencement of starch biosynthesis, while during the storage phase, inulin-type oligofructans accumulated to a high concentration in and around the nascent endosperm cavity. In the shrunken endosperm mutant seg8, with a decreased sucrose flux toward the endosperm, fructan accumulation was impaired. The tight partitioning of oligofructan biosynthesis hints at distinct functions of the various fructan types in the young endosperm prior to starch accumulation and in the endosperm transfer cells that accomplish the assimilate supply toward the endosperm at the storage phase.


Assuntos
Frutanos/metabolismo , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hordeum/genética , Radical Hidroxila/metabolismo , Íons , Metaboloma , Mutação/genética , Oligossacarídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Tempo
13.
J Exp Bot ; 65(18): 5291-304, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25024168

RESUMO

In cereal grains, the maternal nucellar projection (NP) constitutes the link to the filial organs, forming a transfer path for assimilates and signals towards the endosperm. At transition to the storage phase, the NP of barley (Hordeum vulgare) undergoes dynamic and regulated differentiation forming a characteristic pattern of proliferating, elongating, and disintegrating cells. Immunolocalization revealed that abscisic acid (ABA) is abundant in early non-elongated but not in differentiated NP cells. In the maternally affected shrunken-endosperm mutant seg8, NP cells did not elongate and ABA remained abundant. The amounts of the bioactive forms of gibberellins (GAs) as well as their biosynthetic precursors were strongly and transiently increased in wild-type caryopses during the transition and early storage phases. In seg8, this increase was delayed and less pronounced together with deregulated gene expression of specific ABA and GA biosynthetic genes. We concluded that differentiation of the barley NP is driven by a distinct and specific shift from lower to higher GA:ABA ratios and that the spatial-temporal change of GA:ABA balances is required to form the differentiation gradient, which is a prerequisite for ordered transfer processes through the NP. Deregulated ABA:GA balances in seg8 impair the differentiation of the NP and potentially compromise transfer of signals and assimilates, resulting in aberrant endosperm growth. These results highlight the impact of hormonal balances on the proper release of assimilates from maternal to filial organs and provide new insights into maternal effects on endosperm differentiation and growth of barley grains.


Assuntos
Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Hordeum/metabolismo , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia
14.
Metallomics ; 5(9): 1276-84, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23877092

RESUMO

The present study focused on the elemental distribution in the developing wheat grain by using the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) imaging technique. Our studies show that the embryo accumulated high concentrations of nutrient elements, such as Fe, K, Cu, and Zn, while Ca was accumulated in the bran of the wheat grain which might be attributed to its function of structural maintenance. In the endosperm the majority of the nutrients were located in the aleurone layer. Within the grain, the embryo could be considered as a nutrient pool for macro- and micro-elements essential for the development of the seedling. Elemental images showed that considerable amounts of nutrients were stored in the scutellum of the embryo, which might be related to the high gene expression of element transporters in the scutellum. Root primordia and leaf primordia were enriched in particular elements, such as Mn and Zn respectively. In total 34 cross sections were analyzed and used for generation of a sequence of elemental distribution images to demonstrate elemental changes along the perpendicular axis of the wheat grain embryo. Further development of three-dimensional modeling will be combined with physiological studies to better understand the mechanisms of elemental distribution and storage in the wheat grain. These studies will provide fundamental knowledge on improving the nutritional value and agronomic practices.


Assuntos
Grão Comestível/metabolismo , Espectrometria de Massas/métodos , Metais/metabolismo , Triticum/metabolismo , Cálcio/metabolismo , Cobre/metabolismo , Grão Comestível/crescimento & desenvolvimento , Endosperma/crescimento & desenvolvimento , Endosperma/metabolismo , Ferro/metabolismo , Manganês/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Potássio/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Triticum/crescimento & desenvolvimento , Zinco/metabolismo
15.
BMC Plant Biol ; 12: 154, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22935196

RESUMO

BACKGROUND: The majority of nitrogen accumulating in cereal grains originates from proteins remobilised from vegetative organs. However, interactions between grain filling and remobilisation are poorly understood. We used transcriptome large-scale pyrosequencing of flag leaves, glumes and developing grains to identify cysteine peptidase and N transporter genes playing a role in remobilisation and accumulation of nitrogen in barley. RESULTS: Combination of already known and newly derived sequence information reduced redundancy, increased contig length and identified new members of cysteine peptidase and N transporter gene families. The dataset for N transporter genes was aligned with N transporter amino acid sequences of rice and Arabidopsis derived from Aramemnon database. 57 AAT, 45 NRT1/PTR and 22 OPT unigenes identified by this approach cluster to defined subgroups in the respective phylogenetic trees, among them 25 AAT, 8 NRT1/PTR and 5 OPT full-length sequences. Besides, 59 unigenes encoding cysteine peptidases were identified and subdivided into different families of the papain cysteine peptidase clade. Expression profiling of full-length AAT genes highlighted amino acid permeases as the group showing highest transcriptional activity. HvAAP2 and HvAAP6 are highly expressed in vegetative organs whereas HvAAP3 is grain-specific. Sequence similarities cluster HvAAP2 and the putative transporter HvAAP6 together with Arabidopsis transporters, which are involved in long-distance transfer of amino acids. HvAAP3 is closely related to AtAAP1 and AtAAP8 playing a role in supplying N to developing seeds. An important role in amino acid re-translocation can be considered for HvLHT1 and HvLHT2 which are specifically expressed in glumes and flag leaves, respectively. PCA and K-means clustering of AAT transcript data revealed coordinate developmental stages in flag leaves, glumes and grains. Phloem-specific metabolic compounds are proposed that might signal high grain demands for N to distantly located plant organs. CONCLUSIONS: The approach identified cysteine peptidases and specific N transporters of the AAT family as obviously relevant for grain filling and thus, grain yield and quality in barley. Up to now, information is based only on transcript data. To make it relevant for application, the role of identified candidates in sink-source communication has to be analysed in more detail.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Hordeum/enzimologia , Proteínas de Plantas/metabolismo , RNA de Plantas/metabolismo , Sementes/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Comunicação Celular , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Nitrogênio/metabolismo , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Transporte Proteico , RNA de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Alinhamento de Sequência , Análise de Sequência de RNA , Transcrição Gênica
16.
J Exp Bot ; 63(15): 5497-506, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22888132

RESUMO

The SE7 somaclonal line of finger millet (Eleusine coracana) achieved increased grain yield in field trials that apparently resulted from a higher number of inflorescences and seeds per plant, compared with the wild type. Levels of endogenous cytokinins, especially those of highly physiologically active iso-pentenyl adenine, were increased during early inflorescence development in SE7 plants. Transcript levels of cytokinin-degrading enzymes but not of a cytokinin-synthesizing enzyme were also decreased in young leaves, seedlings, and initiating inflorescences of SE7. These data suggest that attenuated degradation of cytokinins in SE7 inflorescences leads to higher cytokinin levels that stimulate meristem activity and result in production of more inflorescences. Gene expression was compared between SE7 and wild-type young inflorescences using the barley 12K cDNA array. The largest fraction of up-regulated genes in SE7 was related to transcription, translation, and cell proliferation, cell wall assembly/biosynthesis, and to growth regulation of young and meristematic tissues including floral formation. Other up-regulated genes were associated with protein and lipid degradation and mitochondrial energy production. Down-regulated genes were related to pathogen defence and stress response, primary metabolism, glycolysis, and the C:N balance. The results indicate a prolonged proliferation phase in SE7 young inflorescences characterized by up-regulated protein synthesis, cytokinesis, floral formation, and energy production. In contrast, wild-type inflorescences are similar to a more differentiated status characterized by regulated protein degradation, cell elongation, and defence/stress responses. It is concluded that attenuated degradation of cytokinins in SE7 inflorescences leads to higher cytokinin levels, which stimulate meristem activity, inflorescence formation, and seed set.


Assuntos
Citocininas/fisiologia , Eleusine/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/genética , Clonagem Molecular , Citocininas/análise , Citocininas/genética , Citocininas/isolamento & purificação , DNA Complementar/genética , Regulação para Baixo , Eleusine/genética , Eleusine/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Homeostase , Inflorescência/genética , Inflorescência/crescimento & desenvolvimento , Inflorescência/fisiologia , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Reguladores de Crescimento de Plantas/análise , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/isolamento & purificação , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , RNA de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Regulação para Cima
17.
PLoS One ; 7(7): e41867, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848641

RESUMO

BACKGROUND: Cell specification and differentiation in the endosperm of cereals starts at the maternal-filial boundary and generates the endosperm transfer cells (ETCs). Besides the importance in assimilate transfer, ETCs are proposed to play an essential role in the regulation of endosperm differentiation by affecting development of proximate endosperm tissues. We attempted to identify signalling elements involved in early endosperm differentiation by using a combination of laser-assisted microdissection and 454 transcriptome sequencing. PRINCIPAL FINDINGS: 454 sequencing of the differentiating ETC region from the syncytial state until functionality in transfer processes captured a high proportion of novel transcripts which are not available in existing barley EST databases. Intriguingly, the ETC-transcriptome showed a high abundance of elements of the two-component signalling (TCS) system suggesting an outstanding role in ETC differentiation. All components and subfamilies of the TCS, including distinct kinds of membrane-bound receptors, have been identified to be expressed in ETCs. The TCS system represents an ancient signal transduction system firstly discovered in bacteria and has previously been shown to be co-opted by eukaryotes, like fungi and plants, whereas in animals and humans this signalling route does not exist. Transcript profiling of TCS elements by qRT-PCR suggested pivotal roles for specific phosphorelays activated in a coordinated time flow during ETC cellularization and differentiation. ETC-specificity of transcriptionally activated TCS phosphorelays was assessed for early differentiation and cellularization contrasting to an extension of expression to other grain tissues at the beginning of ETC maturation. Features of candidate genes of distinct phosphorelays and transcriptional activation of genes putatively implicated in hormone signalling pathways hint at a crosstalk of hormonal influences, putatively ABA and ethylene, and TCS signalling. SIGNIFICANCE: Our findings suggest an integral function for the TCS in ETC differentiation possibly coupled to sequent hormonal regulation by ABA and ethylene.


Assuntos
Endosperma/citologia , Endosperma/genética , Perfilação da Expressão Gênica , Hordeum/citologia , Hordeum/genética , Análise de Sequência de DNA , Transdução de Sinais/genética , Transporte Biológico , Diferenciação Celular , Mapeamento Cromossômico , Bases de Dados Genéticas , Endosperma/crescimento & desenvolvimento , Endosperma/metabolismo , Etiquetas de Sequências Expressas/metabolismo , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Anotação de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Plant J ; 71(4): 639-55, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22487146

RESUMO

Barley endosperm cells differentiate into transfer cells (ETCs) opposite the nucellar projection. To comprehensively analyse ETC differentiation, laser microdissection-based transcript and metabolite profiles were obtained from laser microdissected tissues and cell morphology was analysed. Flange-like secondary-wall ingrowths appeared between 5 and 7 days after pollination within the three outermost cell layers. Gene expression analysis indicated that ethylene-signalling pathways initiate ETC morphology. This is accompanied by gene activity related to cell shape control and vesicle transport, with abundant mitochondria and endomembrane structures. Gene expression analyses indicate predominant formation of hemicelluloses, glucuronoxylans and arabinoxylans, and transient formation of callose, together with proline and 4-hydroxyproline biosynthesis. Activation of the methylation cycle is probably required for biosynthesis of phospholipids, pectins and ethylene. Membrane microdomains involving sterols/sphingolipids and remorins are potentially involved in ETC development. The transcriptional activity of assimilate and micronutrient transporters suggests ETCs as the main uptake organs of solutes into the endosperm. Accordingly, the endosperm grows maximally after ETCs are fully developed. Up-regulated gene expression related to amino acid catabolism, C:N balances, carbohydrate oxidation, mitochondrial activity and starch degradation meets high demands for respiratory energy and carbohydrates, required for cell proliferation and wall synthesis. At 10 days after pollination, ETCs undergo further differentiation, potentially initiated by abscisic acid, and metabolism is reprogrammed as shown by activated storage and stress-related processes. Overall, the data provide a comprehensive view of barley ETC differentiation and development, and identify candidate genes and associated pathways.


Assuntos
Endosperma/citologia , Endosperma/genética , Endosperma/metabolismo , Hordeum/citologia , Hordeum/genética , Ácido Abscísico/metabolismo , Aminoácidos/metabolismo , Diferenciação Celular , Proliferação de Células , Forma Celular/genética , Parede Celular/genética , Endosperma/crescimento & desenvolvimento , Etilenos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hordeum/metabolismo , Microdissecção , Polinização , Esfingolipídeos/metabolismo , Esteróis/metabolismo
19.
Plant J ; 69(6): 1077-93, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22098161

RESUMO

The barley Risø16 mutation leads to inactivation of cytosolic ADP-Glc pyrophosphorylase, and results in decreased ADP-Glc and endospermal starch levels. Here we show that this mutation is accompanied by a decrease in storage protein accumulation and seed size, which indicates that alteration of a single enzymatic step can change the network of storage metabolism as a whole. We used comprehensive transcript, metabolite and hormonal profiling to compare grain metabolism and development of Risø16 and wild-type endosperm. Despite increased sugar availability in mutant endosperm, glycolytic intermediates downstream of hexose phosphates remained unchanged or decreased, while several glycolytic enzymes were downregulated at the transcriptional level. Metabolite and transcript profiling also indicated an inhibition of the tricarboxylic acid cycle at the level of mitochondrial nicotinamide adenine dinucleotide (NAD)-isocitrate dehydrogenase and an attendant decrease in alpha-ketoglutarate and amino acids levels in Risø16, compared with wild type. Decreased levels of cytokinins in Risø16 endosperm suggested co-regulation between starch synthesis, abscisic acid (ABA) deficiency and cytokinin biosynthesis. Comparative cis-element analysis in promoters of jointly downregulated genes in Risø16 revealed an overlap between metabolic and hormonal regulation, which leds to a coordinated downregulation of endosperm-specific and ABA-inducible gene expression (storage proteins) together with repression by sugars (isocitrate dehydrogenase, amylases). Such co-regulation ensured that decreased carbon fluxes into starch lead to a coordinated inhibition of glycolysis, amino acid and storage proteins biosynthesis, which is useful in the prevention of osmotic imbalances and oxidative stress due to increased accumulation of sugars.


Assuntos
Carbono/metabolismo , Citosol/metabolismo , Glucose-1-Fosfato Adenililtransferase/metabolismo , Hordeum/enzimologia , Nitrogênio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/biossíntese , Aminoácidos/metabolismo , Amilases/genética , Amilases/metabolismo , Ciclo do Ácido Cítrico , Citocininas/biossíntese , Endosperma/genética , Endosperma/metabolismo , Endosperma/fisiologia , Regulação da Expressão Gênica de Plantas , Glucose-1-Fosfato Adenililtransferase/genética , Glicólise , Hordeum/genética , Hordeum/metabolismo , Hordeum/fisiologia , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/metabolismo , Amido/biossíntese
20.
J Exp Bot ; 63(5): 2071-87, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22200665

RESUMO

Compartmentation of metabolism in developing seeds is poorly understood due to the lack of data on metabolite distributions at the subcellular level. In this report, a non-aqueous fractionation method is described that allows subcellular concentrations of metabolites in developing barley endosperm to be calculated. (i) Analysis of subcellular volumes in developing endosperm using micrographs shows that plastids and cytosol occupy 50.5% and 49.9% of the total cell volume, respectively, while vacuoles and mitochondria can be neglected. (ii) By using non-aqueous fractionation, subcellular distribution between the cytosol and plastid of the levels of metabolites involved in sucrose degradation, starch synthesis, and respiration were determined. With the exception of ADP and AMP which were mainly located in the plastid, most other metabolites of carbon and energy metabolism were mainly located outside the plastid in the cytosolic compartment. (iii) In developing barley endosperm, the ultimate precursor of starch, ADPglucose (ADPGlc), was mainly located in the cytosol (80-90%), which was opposite to the situation in growing potato tubers where ADPGlc was almost exclusively located in the plastid (98%). This reflects the different subcellular distribution of ADPGlc pyrophosphorylase (AGPase) in these tissues. (iv) Cytosolic concentrations of ADPGlc were found to be close to the published K(m) values of AGPase and the ADPGlc/ADP transporter at the plastid envelope. Also the concentrations of the reaction partners glucose-1-phosphate, ATP, and inorganic pyrophosphate were close to the respective K(m) values of AGPase. (v) Knock-out of cytosolic AGPase in Riso16 mutants led to a strong decrease in ADPGlc level, in both the cytosol and plastid, whereas knock-down of the ADPGlc/ADP transporter led to a large shift in the intracellular distribution of ADPGlc. (v) The thermodynamic structure of the pathway of sucrose to starch was determined by calculating the mass-action ratios of all the steps in the pathway. The data show that AGPase is close to equilibrium, in both the cytosol and plastid, whereas the ADPGlc/ADP transporter is strongly displaced from equilibrium in vivo. This is in contrast to most other tissues, including leaves and potato tubers. (vi) Results indicate transport rather than synthesis of ADPGlc to be the major regulatory site of starch synthesis in barley endosperm. The reversibility of AGPase in the plastid has important implications for the regulation of carbon partitioning between different biosynthetic pathways.


Assuntos
Hordeum/metabolismo , Sementes/metabolismo , Amido/metabolismo , Sacarose/metabolismo , Transporte Biológico , Metabolismo dos Carboidratos , Citosol/metabolismo , Tubérculos/metabolismo , Plastídeos/metabolismo , Solanum tuberosum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...