Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosystems ; 227-228: 104905, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37100112

RESUMO

The increasing global demand for vegetable oils will only be met if there are significant improvements in the productivity of the major oil crops, such as oilseed rape. Metabolic engineering offers the prospect of further gains in yield beyond that already achieved by breeding and selection but requires guidance as to the changes that need to be made. Metabolic Control Analysis, through measurement and estimation of flux control coefficients, can indicate which enzymes have the most influence on a desired flux. Some experiments have previously reported flux control coefficients for oil accumulation in the seeds of oilseed rape, and others have measured control coefficient distributions for multi-enzyme segments of oil synthesis in seed embryo metabolism measured in vitro. In addition, other reported manipulations of oil accumulation contain results that are exploited further here to calculate previously unknown flux control coefficients. These results are then assembled within a framework that allows an integrated interpretation of the controls on oil accumulation from the assimilation of CO2 to deposition of oil in the seed. The analysis shows that the control is distributed to an extent that the gains from amplifying any single target are necessarily limited, but there are candidates for joint amplification that are likely to act synergistically to produce much more significant gains.


Assuntos
Brassica napus , Triglicerídeos/metabolismo , Brassica napus/metabolismo , Óleos de Plantas/metabolismo , Sementes/metabolismo
2.
Prog Lipid Res ; 88: 101181, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820474

RESUMO

Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of traits of farmed animals is also discussed along with DGATs in various other eukaryotic organisms.


Assuntos
Acil Coenzima A , Diacilglicerol O-Aciltransferase , Animais , Humanos , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/química , Diacilglicerol O-Aciltransferase/metabolismo , Acil Coenzima A/metabolismo , Engenharia Metabólica , Triglicerídeos , Eucariotos , Ésteres/metabolismo
3.
Plant Cell Rep ; 40(9): 1647-1663, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34215912

RESUMO

KEY MESSAGE: AIL7 over-expression modulates fatty acid biosynthesis and triacylglycerol accumulation in Arabidopsis developing seeds through the transcriptional regulation of associated genes. Seed fatty acids (FAs) and triacylglycerol (TAG) contribute to many functions in plants, and seed lipids have broad food, feed and industrial applications. As a result, an enormous amount of attention has been dedicated towards uncovering the regulatory cascade responsible for the fine-tuning of the lipid biosynthetic pathway in seeds, which is regulated in part through the action of LEAFY COTYLEDON1, ABSCISSIC ACID INSENSITIVE 3, FUSCA3 and LEC2 (LAFL) transcription factors. Although AINTEGUMENTA-LIKE 7 (AIL7) is involved in meristematic function and shoot phyllotaxy, its effect in the context of lipid biosynthesis has yet to be assessed. Here, we generated AIL7 seed-specific over-expression lines and found that they exhibited significant alterations in FA composition and decreased total lipid accumulation in seeds. Seeds and seedlings from transgenic lines also exhibited morphological deviations compared to wild type. Correspondingly, RNA-Seq analysis demonstrated that the expression of many genes related to FA biosynthesis and TAG breakdown were significantly altered in developing siliques from transgenic lines compared to wild-type plants. The seed-specific over-expression of AIL7 also altered the expression profiles of many genes related to starch metabolism, photosynthesis and stress response, suggesting further roles for AIL7 in plants. These findings not only advance our understanding of the lipid biosynthetic pathway in seeds, but also provide evidence for additional functions of AIL7, which could prove valuable in downstream breeding and/or metabolic engineering endeavors.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Ácidos Graxos/biossíntese , Sementes/metabolismo , Fatores de Transcrição/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ácidos Graxos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Amido/genética , Amido/metabolismo , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo
4.
Plant J ; 105(1): 182-196, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33107656

RESUMO

Production of hydroxy fatty acids (HFAs) in transgenic crops represents a promising strategy to meet our demands for specialized plant oils with industrial applications. The expression of Ricinus communis (castor) OLEATE 12-HYDROXYLASE (RcFAH12) in Arabidopsis has resulted in only limited accumulation of HFAs in seeds, which probably results from inefficient transfer of HFAs from their site of synthesis (phosphatidylcholine; PC) to triacylglycerol (TAG), especially at the sn-1/3 positions of TAG. Phospholipase As (PLAs) may be directly involved in the liberation of HFAs from PC, but the functions of their over-expression in HFA accumulation and distribution at TAG in transgenic plants have not been well studied. In this work, the functions of lecithin:cholesterol acyltransferase-like PLAs (LCAT-PLAs) in HFA biosynthesis were characterized. The LCAT-PLAs were shown to exhibit homology to LCAT and mammalian lysosomal PLA2 , and to contain a conserved and functional Ser/His/Asp catalytic triad. In vitro assays revealed that LCAT-PLAs from the HFA-accumulating plant species Physaria fendleri (PfLCAT-PLA) and castor (RcLCAT-PLA) could cleave acyl chains at both the sn-1 and sn-2 positions of PC, and displayed substrate selectivity towards sn-2-ricinoleoyl-PC over sn-2-oleoyl-PC. Furthermore, co-expression of RcFAH12 with PfLCAT-PLA or RcLCAT-PLA, but not Arabidopsis AtLCAT-PLA, resulted in increased occupation of HFA at the sn-1/3 positions of TAG as well as small but insignificant increases in HFA levels in Arabidopsis seeds compared with RcFAH12 expression alone. Therefore, PfLCAT-PLA and RcLCAT-PLA may contribute to HFA turnover on PC, and represent potential candidates for engineering the production of unusual fatty acids in crops.


Assuntos
Brassicaceae/enzimologia , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Fosfatidilcolinas/metabolismo , Proteínas de Plantas/metabolismo , Ricinus/enzimologia , Arabidopsis/metabolismo , Brassicaceae/genética , Ácidos Graxos/metabolismo , Lisofosfolipídeos , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estrutura Terciária de Proteína , Ricinus/genética , Sementes/metabolismo , Especificidade por Substrato
5.
Metab Eng ; 62: 20-29, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32841680

RESUMO

Punicic acid (PuA; 18:3Δ9cis,11trans,13cis), a conjugated linolenic acid isomer bearing three conjugated double bonds, is associated with various health benefits and has potential for industrial use. The major nature source of this unusual fatty acid is pomegranate (Punica granatum) seed oil, which contains up to 80% (w/w) of its fatty acids as PuA. Pomegranate seed oil, however, is low yielding with unstable production and thus limits the supply of PuA. Metabolic engineering of established temperate oil crops for PuA production, therefore, has the potential to be a feasible strategy to overcome the limitations associated with sourcing PuA from pomegranate. In this study, the cDNAs encoding a pomegranate fatty acid conjugase and a pomegranate oleate desaturase were co-expressed in canola-type Brassica napus. Transgenic B. napus lines accumulated up to 11% (w/w) of the total fatty acids as PuA in the seed oil, which is the highest level of PuA reported in metabolically engineered oilseed crops so far. Levels of seed oil PuA were stable over two generations and had no negative effects on seed germination. The transgenic B. napus lines with the highest PuA levels contained multiple transgene insertions and the PuA content of B. napus seed oil was correlated with efficiency of oleic acid desaturation and linoleic acid conjugation. In addition, PuA accumulated at lower levels in polar lipids (5.0-6.9%) than triacylglycerol (7.5-10.6%), and more than 60% of triacylglycerol-associated PuA was present at the sn-2 position. This study provides the basis for the commercial production of PuA in transgenic oilseed crops and thus would open new prospects for the application of this unusual fatty acid in health and industry.


Assuntos
Brassica napus , Lythraceae , Brassica napus/genética , Ácidos Linolênicos , Lythraceae/genética , Óleos de Plantas , Sementes/genética
6.
Front Plant Sci ; 11: 403, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351524

RESUMO

Lysophosphatidylcholine acyltransferase (LPCAT, EC 2.3.1.23) is an evolutionarily conserved key enzyme in the Lands cycle that catalyzes acylation of lysophosphatidylcholine (LPC) to produce phosphatidylcholine (PC), the main phospholipid in cellular membranes. In this study, three LPCAT genes from sunflower were identified and the corresponding proteins characterized. These HaLPCAT genes encoded functionally active enzymes that were able to complement a deficient yeast mutant. Moreover, enzymatic assays were carried out using microsomal preparations of the yeast cells. When acyl specificities were measured in the forward reaction, these enzymes exhibited a substrate preference for unsaturated acyl-CoAs, especially for linolenoyl-CoA, while in the reverse reaction, linoleoyl or linolenoyl acyl groups were transferred from PC to acyl-CoA to a similar extent. Expression levels of LPCAT genes were studied revealing distinct tissue-specific expression patterns. In summary, this study suggests that the combined forward and reverse reactions catalyzed by sunflower LPCATs facilitate acyl-exchange between the sn-2 position of PC and the acyl-CoA pool. Sunflower LPCATs displayed different characteristics, which could point to different functionalities, favoring the enrichment of seed triacylglycerols (TAGs) with polyunsaturated fatty acid (PUFA).

7.
Plant Cell Rep ; 39(7): 953-969, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32314045

RESUMO

KEY MESSAGE: Seed-specific down-regulation of AtCESA1 and AtCESA9, which encode cellulose synthase subunits, differentially affects seed storage compound accumulation in Arabidopsis. High amounts of cellulose can negatively affect crop seed quality, and, therefore, diverting carbon partitioning from cellulose to oil, protein and/or starch via molecular breeding may improve seed quality. To determine the effect of seed cellulose content reduction on levels of storage compounds, Arabidopsis thaliana CELLULOSE SYNTHASE1 (AtCESA1) and AtCESA9 genes, which both encode cellulose synthase subunits, were individually down-regulated using seed-specific intron-spliced hairpin RNA (hpRNAi) constructs. The selected seed-specific AtCESA1 and AtCESA9 Arabidopsis RNAi lines displayed reduced cellulose contents in seeds, and exhibited no obvious visual phenotypic growth defects with the exception of a minor effect on early root development in AtCESA1 RNAi seedlings and early hypocotyl elongation in the dark in both types of RNAi line. The seed-specific down-regulation of AtCESA9 resulted in a reduction in seed weight compared to empty vector controls, which was not observed in AtCESA1 RNAi lines. In terms of effects on carbon partitioning, AtCESA1 and AtCESA9 RNAi lines exhibited distinct effects. The down-regulation of AtCESA1 led to a ~ 3% relative increase in seed protein content (P = 0.04) and a ~ 3% relative decrease in oil content (P = 0.02), but caused no alteration in soluble glucose levels. On the contrary, AtCESA9 RNAi lines did not display a significant reduction in seed oil, protein or soluble glucose content. Taken together, our results indicate that the seed-specific down-regulation of AtCESA1 causes alterations in seed storage compound accumulation, while the effect of AtCESA9 on carbon partitioning is absent or minor in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Carbono/metabolismo , Celulose/metabolismo , Regulação para Baixo , Glucosiltransferases/metabolismo , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Glucosiltransferases/genética , Homozigoto , Hipocótilo/anatomia & histologia , Especificidade de Órgãos , Fenótipo , Óleos de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Interferência de RNA , Sementes/enzimologia , Solubilidade , Amido/metabolismo
8.
Plant Mol Biol ; 101(6): 521-536, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31549344

RESUMO

KEY MESSAGE: Castor patatin-like phospholipase A IIIß facilitates the exclusion of hydroxy fatty acids from phosphatidylcholine in developing transgenic Arabidopsis seeds. Hydroxy fatty acids (HFAs) are industrial useful, but their major natural source castor contains toxic components. Although expressing a castor OLEATE 12-HYDROXYLASE in Arabidopsis thaliana leads to the synthesis of HFAs in seeds, a high proportion of the HFAs are retained in phosphatidylcholine (PC). Thus, the liberation of HFA from PC seems to be critical for obtaining HFA-enriched seed oils. Plant phospholipase A (PLA) catalyzes the hydrolysis of PC to release fatty acyl chains that can be subsequently channeled into triacylglycerol (TAG) synthesis or other metabolic pathways. To further our knowledge regarding the function of PLAs from HFA-producing plant species, two class III patatin-like PLA cDNAs (pPLAIIIß or pPLAIIIδ) from castor or Physaria fendleri were overexpressed in a transgenic line of A. thaliana producing C18-HFA, respectively. Only the overexpression of RcpPLAIIIß resulted in a significant reduction in seed HFA content with concomitant changes in fatty acid composition. Reductions in HFA content occurred in both PC and TAG indicating that HFAs released from PC were not incorporated into TAG. These results suggest that RcpPLAIIIß may catalyze the removal of HFAs from PC in the developing seeds synthesizing these unusual fatty acids.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfolipases/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética
9.
J Biol Chem ; 294(41): 14838-14844, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31481466

RESUMO

Polyunsaturated fatty acids (PUFAs) such as α-linolenic acid (ALA, 18:3Δ9cis,12cis,15cis ) have high nutritional and industrial values. In oilseed crops, PUFAs are synthesized on phosphatidylcholine (PC) and accumulated in triacylglycerol (TAG). Therefore, exploring the mechanisms that route PC-derived PUFA to TAG is essential for understanding and improving PUFA production. The seed oil of flax (Linum usitatissimum) is enriched in ALA, and this plant has many lipid biosynthetic enzymes that prefer ALA-containing substrates. In this study, using membrane yeast two-hybrid and bimolecular fluorescence complementation assays, we probed recombinant flax transferase enzymes, previously shown to contribute to PUFA enrichment of TAG, for physical interactions with each other under in vivo conditions. We found that diacylglycerol acyltransferases, which catalyze the final reaction in acyl-CoA-dependent TAG biosynthesis, interact with the acyl-editing enzymes phosphatidylcholine: diacylglycerol cholinephosphotransferase, and lysophosphatidylcholine acyltransferase. Physical interactions among the acyl-editing enzymes were also identified. These findings reveal the presence of an assembly of interacting transferases that may facilitate the channeling of PUFA from PC to TAG in flax and possibly also in other oleaginous plants that produce seeds enriched in PC-modified fatty acids.


Assuntos
Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Graxos Insaturados/metabolismo , Fosfatidilcolinas/metabolismo , Triglicerídeos/metabolismo , Linho/enzimologia , Fosfatidilcolinas/química , Ligação Proteica , Triglicerídeos/química , Ácido alfa-Linolênico/metabolismo
10.
Biochem J ; 476(1): 151-164, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30559328

RESUMO

Long-chain acyl-CoA synthetase (LACS, EC 6.2.1.3) catalyzes the ATP-dependent activation of free fatty acid to form acyl-CoA, which, in turn, serves as the major acyl donor for various lipid metabolic pathways. Increasing the size of acyl-CoA pool by enhancing LACS activity appears to be a useful approach to improve the production and modify the composition of fatty acid-derived compounds, such as triacylglycerol. In the present study, we aimed to improve the enzyme activity of Arabidopsis thaliana LACS9 (AtLACS9) by introducing random mutations into its cDNA using error-prone PCR. Two AtLACS9 variants containing multiple amino acid residue substitutions were identified with enhanced enzyme activity. To explore the effect of each amino acid residue substitution, single-site mutants were generated and the amino acid substitutions C207F and D238E were found to be primarily responsible for the increased activity of the two variants. Furthermore, evolutionary analysis revealed that the beneficial amino acid site C207 is conserved among LACS9 from plant eudicots, whereas the other beneficial amino acid site D238 might be under positive selection. Together, our results provide valuable information for the production of LACS variants for applications in the metabolic engineering of lipid biosynthesis in oleaginous organisms.


Assuntos
Substituição de Aminoácidos , Proteínas de Arabidopsis , Arabidopsis , Coenzima A Ligases , Evolução Molecular Direcionada , Mutagênese , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Coenzima A Ligases/química , Coenzima A Ligases/genética
11.
Sci Rep ; 8(1): 16665, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420764

RESUMO

Proteins with multifunctional regulatory domains often demonstrate structural plasticity or protein disorder, allowing the binding of multiple regulatory factors and post-translational modifications. While the importance of protein disorder is clear, it also poses a challenge for in vitro characterization. Here, we report protein intrinsic disorder in a plant molecular system, which despite its prevalence is less studied. We present a detailed biophysical characterization of the entire cytoplasmic N-terminal domain of Brassica napus diacylglycerol acyltransferase, (DGAT1), which includes an inhibitory module and allosteric binding sites. Our results demonstrate that the monomeric N-terminal domain can be stabilized for biophysical characterization and is largely intrinsically disordered in solution. This domain interacts with allosteric modulators of DGAT1, CoA and oleoyl-CoA, at micromolar concentrations. While solution scattering studies indicate conformational heterogeneity in the N-terminal domain of DGAT1, there is a small gain of secondary structure induced by ligand binding.


Assuntos
Brassica napus/metabolismo , Diacilglicerol O-Aciltransferase/química , Diacilglicerol O-Aciltransferase/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Acil Coenzima A/química , Acil Coenzima A/metabolismo , Calorimetria , Cromatografia em Gel , Dicroísmo Circular , Biologia Computacional , Conformação Proteica
12.
Lipids ; 53(7): 663-688, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30252128

RESUMO

Triacylglycerol (TAG) is the major storage lipid in most terrestrial plants and microalgae, and has great nutritional and industrial value. Since the demand for vegetable oil is consistently increasing, numerous studies have been focused on improving the TAG content and modifying the fatty-acid compositions of plant seed oils. In addition, there is a strong research interest in establishing plant vegetative tissues and microalgae as platforms for lipid production. In higher plants and microalgae, TAG biosynthesis occurs via acyl-CoA-dependent or acyl-CoA-independent pathways. Diacylglycerol acyltransferase (DGAT) catalyzes the last and committed step in the acyl-CoA-dependent biosynthesis of TAG, which appears to represent a bottleneck in oil accumulation in some oilseed species. Membrane-bound and soluble forms of DGAT have been identified with very different amino-acid sequences and biochemical properties. Alternatively, TAG can be formed through acyl-CoA-independent pathways via the catalytic action of membrane-bound phospholipid:diacylglycerol acyltransferase (PDAT). As the enzymes catalyzing the terminal steps of TAG formation, DGAT and PDAT play crucial roles in determining the flux of carbon into seed TAG and thus have been considered as the key targets for engineering oil production. Here, we summarize the most recent knowledge on DGAT and PDAT in higher plants and microalgae, with the emphasis on their physiological roles, structural features, and regulation. The development of various metabolic engineering strategies to enhance the TAG content and alter the fatty-acid composition of TAG is also discussed.


Assuntos
Acil Coenzima A/metabolismo , Aciltransferases/metabolismo , Biotecnologia , Diacilglicerol O-Aciltransferase/metabolismo , Microalgas/enzimologia , Plantas/enzimologia
13.
Lipids ; 53(5): 469-480, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29989678

RESUMO

Acyl-lipids such as intracellular phospholipids, galactolipids, sphingolipids, and surface lipids play a crucial role in plant cells by serving as major components of cellular membranes, seed storage oils, and extracellular lipids such as cutin and suberin. Plant lipids are also widely used to make food, renewable biomaterials, and fuels. As such, enormous efforts have been made to uncover the specific roles of different genes and enzymes involved in lipid biosynthetic pathways over the last few decades. sn-Glycerol-3-phosphate acyltransferases (GPAT) are a group of important enzymes catalyzing the acylation of sn-glycerol-3-phosphate at the sn-1 or sn-2 position to produce lysophosphatidic acids. This reaction constitutes the first step of storage-lipid assembly and is also important in polar- and extracellular-lipid biosynthesis. Ten GPAT have been identified in Arabidopsis, and many homologs have also been reported in other plant species. These enzymes differentially localize to plastids, mitochondria, and the endoplasmic reticulum, where they have different biological functions, resulting in distinct metabolic fate(s) for lysophosphatidic acid. Although studies in recent years have led to new discoveries about plant GPAT, many gaps still exist in our understanding of this group of enzymes. In this article, we highlight current biochemical and molecular knowledge regarding plant GPAT, and also discuss deficiencies in our understanding of their functions in the context of plant acyl-lipid biosynthesis.


Assuntos
Arabidopsis/enzimologia , Biocatálise , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Lipídeos/biossíntese
14.
Plant J ; 96(2): 287-299, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30003607

RESUMO

Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the final and committed step in the Kennedy pathway for triacylglycerol (TAG) biosynthesis and, as such, elucidating its mode of regulation is critical to understand the fundamental aspects of carbon metabolism in oleaginous crops. In this study, purified Brassica napus diacylglycerol acyltransferase 1 (BnaDGAT1) in n-dodecyl-ß-d-maltopyranoside micelles was lipidated to form mixed micelles and subjected to detailed biochemical analysis. The degree of mixed micelle fluidity appeared to influence acyltransferase activity. BnaDGAT1 exhibited a sigmoidal response and eventual substrate inhibition with respect to increasing concentrations of oleoyl-CoA. Phosphatidate (PA) was identified as a feed-forward activator of BnaDGAT1, enabling the final enzyme in the Kennedy pathway to adjust to the incoming flow of carbon leading to TAG. In the presence of PA, the oleoyl-CoA saturation plot became more hyperbolic and desensitized to substrate inhibition indicating that PA facilitates the transition of the enzyme into the more active state. PA may also relieve possible autoinhibition of BnaDGAT1 brought about by the N-terminal regulatory domain, which was shown to interact with PA. Indeed, PA is a key effector modulating lipid homeostasis, in addition to its well recognized role in lipid signaling. BnaDGAT1 was also shown to be a substrate of the sucrose non-fermenting-1-related kinase 1 (SnRK1), which catalyzed phosphorylation of the enzyme and converted it to a less active form. Thus, this known regulator of carbon metabolism directly influences TAG biosynthesis.


Assuntos
Brassica napus/enzimologia , Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Fosfatídicos/metabolismo , Triglicerídeos/biossíntese , Acil Coenzima A/metabolismo , Brassica napus/genética , Metabolismo dos Carboidratos , Catálise , Diacilglicerol O-Aciltransferase/genética , Metabolismo Energético , Homeostase , Lipídeos/fisiologia , Fosforilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
15.
Biochem J ; 475(8): 1473-1489, 2018 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-29523747

RESUMO

Seed oil from flax (Linum usitatissimum) is enriched in α-linolenic acid (ALA; 18:3Δ9cis,12cis,15cis ), but the biochemical processes underlying the enrichment of flax seed oil with this polyunsaturated fatty acid are not fully elucidated. Here, a potential process involving the catalytic actions of long-chain acyl-CoA synthetase (LACS) and diacylglycerol acyltransferase (DGAT) is proposed for ALA enrichment in triacylglycerol (TAG). LACS catalyzes the ATP-dependent activation of free fatty acid to form acyl-CoA, which in turn may serve as an acyl-donor in the DGAT-catalyzed reaction leading to TAG. To test this hypothesis, flax LACS and DGAT cDNAs were functionally expressed in Saccharomyces cerevisiae strains to probe their possible involvement in the enrichment of TAG with ALA. Among the identified flax LACSs, LuLACS8A exhibited significantly enhanced specificity for ALA over oleic acid (18:1Δ9cis ) or linoleic acid (18:2Δ9cis,12cis ). Enhanced α-linolenoyl-CoA specificity was also observed in the enzymatic assay of flax DGAT2 (LuDGAT2-3), which displayed ∼20 times increased preference toward α-linolenoyl-CoA over oleoyl-CoA. Moreover, when LuLACS8A and LuDGAT2-3 were co-expressed in yeast, both in vitro and in vivo experiments indicated that the ALA-containing TAG enrichment process was operative between LuLACS8A- and LuDGAT2-3-catalyzed reactions. Overall, the results support the hypothesis that the cooperation between the reactions catalyzed by LACS8 and DGAT2 may represent a route to enrich ALA production in the flax seed oil.


Assuntos
Acil Coenzima A/metabolismo , Coenzima A Ligases/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Linho/metabolismo , Óleo de Semente do Linho/metabolismo , Ácido Oleico/metabolismo , Ácido alfa-Linolênico/metabolismo , Sequência de Aminoácidos , Homologia de Sequência , Especificidade por Substrato
16.
Appl Microbiol Biotechnol ; 102(8): 3537-3549, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29502183

RESUMO

Punicic acid (PuA; 18: 3Δ 9cis,11trans,13cis ) is an unusual 18-carbon fatty acid bearing three conjugated double bonds. It has been shown to exhibit a myriad of beneficial bioactivities including anti-cancer, anti-diabetes, anti-obesity, antioxidant, and anti-inflammatory properties. Pomegranate (Punica granatum) seed oil contains approximately 80% PuA and is currently the major natural source of this remarkable fatty acid. While both PuA and pomegranate seed oil have been used as functional ingredients in foods and cosmetics for some time, their value in pharmaceutical/medical and industrial applications are presently under further exploration. Unfortunately, the availability of PuA is severely limited by the low yield and unstable supply of pomegranate seeds. In addition, efforts to produce PuA in transgenic crops have been limited by a relatively low content of PuA in the resulting seed oil. The production of PuA in engineered microorganisms with modern fermentation technology is therefore a promising and emerging method with the potential to resolve this predicament. In this paper, we provide a comprehensive review of this unusual fatty acid, covering topics ranging from its natural sources, biosynthesis, extraction and analysis, bioactivity, health benefits, and industrial applications, to recent efforts and future perspectives on the production of PuA in engineered plants and microorganisms.


Assuntos
Ácidos Linolênicos/biossíntese , Ácidos Linolênicos/genética , Lythraceae/química , Lythraceae/genética , Bioengenharia/tendências , Ácidos Linolênicos/isolamento & purificação , Microrganismos Geneticamente Modificados , Óleos de Plantas/química , Plantas Geneticamente Modificadas , Sementes/química
17.
Appl Microbiol Biotechnol ; 101(21): 7913-7922, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28918508

RESUMO

Punicic acid (PuA) is a conjugated linolenic acid (C18:3Δ9c,11t,13c) with a wide range of nutraceutic effects with the potential to reduce the incidence of a number of health disorders including diabetes, obesity, and cancer. It is the main component of seed oil from Punica granatum and Trichosanthes kirilowii. Previously, production of relatively high levels of this unusual fatty acid in the seed oil of transgenic Arabidopsis thaliana plant was accomplished by the use of A. thaliana fad3/fae1 mutant high in linoleic acid (18:2∆9c,12c) and by co-expression of P. granatum FATTY ACID CONJUGASE (PgFADX) with Δ12-DESATURASE (FAD2). In the current study, P. granatum cDNAs governing PuA production were introduced into the yeast Schizosaccharomyces pombe. Expression of PgFADX alone resulted in production of PuA at the level of 19.6% of total fatty acids. Co-expression PgFADX with PgFAD2, however, further enhanced PuA content to 25.1% of total fatty acids, the highest level reported to date for heterologous expression. Therefore, microbial systems can be considered as a potential alternative to plant sources for a source of PuA for nutraceutic applications.


Assuntos
Ácidos Linolênicos/metabolismo , Lythraceae/enzimologia , Engenharia Metabólica , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Expressão Gênica , Lythraceae/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
J Biol Chem ; 292(43): 17819-17831, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-28900030

RESUMO

The apparent bottleneck in the accumulation of oil during seed development in some oleaginous plant species is the formation of triacylglycerol (TAG) by the acyl-CoA-dependent acylation of sn-1,2-diacylglycerol catalyzed by diacylglycerol acyltransferase (DGAT, EC 2.3.1.20). Improving DGAT activity using protein engineering could lead to improvements in seed oil yield (e.g. in canola-type Brassica napus). Directed evolution of B. napus DGAT1 (BnaDGAT1) previously revealed that one of the regions where amino acid residue substitutions lead to higher performance in BnaDGAT1 is in the ninth predicted transmembrane domain (PTMD9). In this study, several BnaDGAT1 variants with amino acid residue substitutions in PTMD9 were characterized. Among these enzyme variants, the extent of yeast TAG production was affected by different mechanisms, including increased enzyme activity, increased polypeptide accumulation, and possibly reduced substrate inhibition. The kinetic properties of the BnaDGAT1 variants were affected by the amino acid residue substitutions, and a new kinetic model based on substrate inhibition and sigmoidicity was generated. Based on sequence alignment and further biochemical analysis, the amino acid residue substitutions that conferred increased TAG accumulation were shown to be present in the DGAT1-PTMD9 region of other higher plant species. When amino acid residue substitutions that increased BnaDGAT1 enzyme activity were introduced into recombinant Camelina sativa DGAT1, they also improved enzyme performance. Thus, the knowledge generated from directed evolution of DGAT1 in one plant species can be transferred to other plant species and has potentially broad applications in genetic engineering of oleaginous crops and microorganisms.


Assuntos
Brassica napus/genética , Diacilglicerol O-Aciltransferase , Metabolismo dos Lipídeos , Proteínas de Plantas , Saccharomyces cerevisiae/enzimologia , Substituição de Aminoácidos , Brassica napus/enzimologia , Diacilglicerol O-Aciltransferase/biossíntese , Diacilglicerol O-Aciltransferase/genética , Mutação de Sentido Incorreto , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética
19.
Plant Physiol ; 175(2): 667-680, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28827454

RESUMO

Diacylglycerol acyltransferase 1 (DGAT1) is an integral membrane enzyme catalyzing the final and committed step in the acyl-coenzyme A (CoA)-dependent biosynthesis of triacylglycerol (TAG). The biochemical regulation of TAG assembly remains one of the least understood areas of primary metabolism to date. Here, we report that the hydrophilic N-terminal domain of Brassica napus DGAT1 (BnaDGAT11-113) regulates activity based on acyl-CoA/CoA levels. The N-terminal domain is not necessary for acyltransferase activity and is composed of an intrinsically disordered region and a folded segment. We show that the disordered region has an autoinhibitory function and a dimerization interface, which appears to mediate positive cooperativity, whereas the folded segment of the cytosolic region was found to have an allosteric site for acyl-CoA/CoA. Under increasing acyl-CoA levels, the binding of acyl-CoA with this noncatalytic site facilitates homotropic allosteric activation. Enzyme activation, on the other hand, is prevented under limiting acyl-CoA conditions (low acyl-CoA-to-CoA ratio), whereby CoA acts as a noncompetitive feedback inhibitor through interaction with the same folded segment. The three-dimensional NMR solution structure of the allosteric site revealed an α-helix with a loop connecting a coil fragment. The conserved amino acid residues in the loop interacting with CoA were identified, revealing details of this important regulatory element for allosteric regulation. Based on these results, a model is proposed illustrating the role of the N-terminal domain of BnaDGAT1 as a positive and negative modulator of TAG biosynthesis.


Assuntos
Regulação Alostérica , Brassica napus/enzimologia , Diacilglicerol O-Aciltransferase/química , Modelos Biológicos , Acil Coenzima A/metabolismo , Sítio Alostérico , Sequência de Aminoácidos , Brassica napus/genética , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Modelos Estruturais , Ressonância Magnética Nuclear Biomolecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios Proteicos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Triglicerídeos/metabolismo
20.
Plant J ; 92(2): 167-177, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28755522

RESUMO

Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the acyl-CoA-dependent biosynthesis of triacylglycerol, the predominant component of seed oil. In some oil crops, including Brassica napus, the level of DGAT1 activity can have a substantial effect on triacylglycerol production. Structure-function insights into DGAT1, however, remain limited because of the lack of a three-dimensional detailed structure for this membrane-bound enzyme. In this study, the amino acid residues governing B. napus DGAT1 (BnaDGAT1) activity were investigated via directed evolution, targeted mutagenesis, in vitro enzymatic assay, topological analysis, and transient expression of cDNA encoding selected enzyme variants in Nicotiana benthamiana. Directed evolution revealed that numerous amino acid residues were associated with increased BnaDGAT1 activity, and 67% of these residues were conserved among plant DGAT1s. The identified amino acid residue substitution sites occur throughout the BnaDGAT1 polypeptide, with 89% of the substitutions located outside the putative substrate binding or active sites. In addition, cDNAs encoding variants I447F or L441P were transiently overexpressed in N. benthamiana leaves, resulting in 33.2 or 70.5% higher triacylglycerol content, respectively, compared with native BnaDGAT1. Overall, the results provide novel insights into amino acid residues underlying plant DGAT1 function and performance-enhanced BnaDGAT1 variants for increasing vegetable oil production.


Assuntos
Diacilglicerol O-Aciltransferase/genética , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Brassica napus/enzimologia , Domínio Catalítico/genética , Domínio Catalítico/fisiologia , Diacilglicerol O-Aciltransferase/metabolismo , Diacilglicerol O-Aciltransferase/fisiologia , Evolução Molecular Direcionada/métodos , Folhas de Planta/metabolismo , Conformação Proteica , Nicotiana/enzimologia , Triglicerídeos/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...